Featured Research

from universities, journals, and other organizations

Insulators made into conductors: Polymers coaxed to line up, transformed into materials that could dissipate heat

Date:
March 9, 2010
Source:
Massachusetts Institute of Technology
Summary:
Most polymers -- materials made of long, chain-like molecules -- are very good insulators for both heat and electricity. But scientists have now found a way to transform the most widely used polymer, polyethylene, into a material that conducts heat just as well as most metals, yet remains an electrical insulator.

The new method involves pulling a thin thread of material (top) from a liquid solution (bottom), and in the process the individual polymer filaments, which start out as a tangled mass, become very highly aligned.
Credit: Illustration courtesy of Gang Chen

Most polymers -- materials made of long, chain-like molecules -- are very good insulators for both heat and electricity. But an MIT team has found a way to transform the most widely used polymer, polyethylene, into a material that conducts heat just as well as most metals, yet remains an electrical insulator.

The new process causes the polymer to conduct heat very efficiently in just one direction, unlike metals, which conduct equally well in all directions. This may make the new material especially useful for applications where it is important to draw heat away from an object, such as a computer processor chip. The work is described in a paper published on March 7 in Nature Nanotechnology.

The key to the transformation was getting all the polymer molecules to line up the same way, rather than forming a chaotic tangled mass, as they normally do. The team did that by slowly drawing a polyethylene fiber out of a solution, using the finely controllable cantilever of an atomic force microscope, which they also used to measure the properties of the resulting fiber.

This fiber was about 300 times more thermally conductive than normal polyethylene along the direction of the individual fibers, says the team's leader, Gang Chen, the Carl Richard Soderberg Professor of Power Engineering and director of MIT's Pappalardo Micro and Nano Engineering Laboratories.

The high thermal conductivity could make such fibers useful for dissipating heat in many applications where metals are now used, such as solar hot water collectors, heat exchangers and electronics.

Chen explains that most attempts to create polymers with improved thermal conductivity have focused on adding in other materials, such as carbon nanotubes, but these have achieved only modest increases in conductivity because the interfaces between the two kinds of material tend to add thermal resistance. "The interfaces actually scatter heat, so you don't get much improvement," Chen says. But using this new method, the conductivity was enhanced so much that it was actually better than that of about half of all pure metals, including iron and platinum.

Producing the new fibers, in which the polymer molecules are all aligned instead of jumbled, required a two-stage process, explains graduate student Sheng Shen, the lead author of the paper. The polymer is initially heated and drawn out, then heated again to stretch it further. "Once it solidifies at room temperature, you can't do any large deformation," Shen says, "so we heat it up twice."

Even greater gains are likely to be possible as the technique is improved, says Chen, noting that the results achieved so far already represent the highest thermal conductivity ever seen in any polymer material. Already, the degree of conductivity they produce, if such fibers could be made in quantity, could provide a cheaper alternative to metals used for heat transfer in many applications, especially ones where the directional characteristics would come in handy, such as heat-exchanger fins (like the coils on the back of a refrigerator or in an air conditioner), cell-phone casings or the plastic packaging for computer chips. Other applications might be devised that take advantage of the material's unusual combination of thermal conductivity with light weight, chemical stability and electrical insulation.

So far, the team has just produced individual fibers in a laboratory setting, Chen says, but "we're hoping that down the road, we can scale up to a macro scale," producing whole sheets of material with the same properties.

Ravi Prasher, an engineer at Intel, says that "the quality of the work from Prof. Chen's group has always been phenomenal," and adds that "this is a very significant finding" that could have many applications in electronics. The remaining question, he says, is "how scalable is the manufacturing of these fibers? How easy is it to integrate these fibers in real-world applications?"

This work, which also included Chen's former graduate students Asegun Henry and Jonathan Tong, was supported by the National Science Foundation and the Department of Energy's Office of Basic Energy Sciences.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David Chandler, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shen et al. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010; 5 (4): 251 DOI: 10.1038/nnano.2010.27

Cite This Page:

Massachusetts Institute of Technology. "Insulators made into conductors: Polymers coaxed to line up, transformed into materials that could dissipate heat." ScienceDaily. ScienceDaily, 9 March 2010. <www.sciencedaily.com/releases/2010/03/100307215542.htm>.
Massachusetts Institute of Technology. (2010, March 9). Insulators made into conductors: Polymers coaxed to line up, transformed into materials that could dissipate heat. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2010/03/100307215542.htm
Massachusetts Institute of Technology. "Insulators made into conductors: Polymers coaxed to line up, transformed into materials that could dissipate heat." ScienceDaily. www.sciencedaily.com/releases/2010/03/100307215542.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins