Featured Research

from universities, journals, and other organizations

Researchers create 'handshaking' particles

Date:
March 24, 2010
Source:
New York University
Summary:
Physicists have created "handshaking" particles that link together based on their shape rather than randomly. Their work marks the first time scientists have succeeded in "programming" particles to join in this manner and offers a type of architecture that could enhance the creation of synthetic materials.

NYU physicists have created "handshaking" particles that link together based on their shape rather than randomly. The graphic shows how the researchers developed a "lock and key" mechanism that allows specific particles to join together.
Credit: Image courtesy of Nature.

Physicists at New York University have created "handshaking" particles that link together based on their shape rather than randomly. Their work, reported in the latest issue of the journal Nature, marks the first time scientists have succeeded in "programming" particles to join in this manner and offers a type of architecture that could enhance the creation of synthetic materials.

"We expect these interactions to offer unprecedented opportunities for engineering 'smart' composite particles, new functional materials, and microscopic machinery with mobile parts," wrote the researchers, part of NYU's Center for Soft Matter Research.

The process is centered on creating and manipulating colloids -- particles suspended within a fluid medium. Colloidal dispersions comprise such everyday items as milk, gelatin, glass, and porcelain.

Working with microscopic particles -- 25 placed together, end-to-end, would match the width of a strand of human hair -- the researchers developed a "lock and key" mechanism that would allow specific particles to join together much in the way Pac-Man would swallow dots in the 1980s video game.

The "key" is any spherical particle. Creating the "lock," however, required a multi-step polymerization process. To do it, the researchers took a droplet of oil and placed it in water. The process resulted in a hardened outer shell, which would then buckle to form an indentation, or Pac-Man mouth, allowing it to bind to the other sphere ("the key").

The work is part of scientists' ongoing efforts to understand and control how particles self-assemble to make new materials. Complex materials cannot be constructed particle by particle; rather, they must be directed to self-assemble, which would produce these materials in an efficient manner. However, manipulating the self-assembly process has proven elusive to scientists because their understanding of how particles interact is limited.

By creating a process by which particles come together to form an aggregate, physicists at NYU's Center for Soft Matter Research have marked a next step in understanding and developing the self-assembly process.

The paper's authors are: Stefano Sacanna and William Irvine, post-doctoral researchers in NYU's Department of Physics, and NYU Physics Professors Paul Chaikin and David Pine.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sacanna et al. Lock and key colloids. Nature, 2010; 464 (7288): 575 DOI: 10.1038/nature08906

Cite This Page:

New York University. "Researchers create 'handshaking' particles." ScienceDaily. ScienceDaily, 24 March 2010. <www.sciencedaily.com/releases/2010/03/100324142006.htm>.
New York University. (2010, March 24). Researchers create 'handshaking' particles. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/03/100324142006.htm
New York University. "Researchers create 'handshaking' particles." ScienceDaily. www.sciencedaily.com/releases/2010/03/100324142006.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins