Featured Research

from universities, journals, and other organizations

Individual light atoms, such as carbon and oxygen, identified with new microscope

Date:
March 28, 2010
Source:
DOE/Oak Ridge National Laboratory
Summary:
Using the latest in aberration-corrected electron microscopy, researchers have obtained the first images that distinguish individual light atoms such as boron, carbon, nitrogen and oxygen.

Individual boron and nitrogen atoms are clearly distinguished by their intensity in this Z-contrast scanning electron transmission microscope image from Oak Ridge National Laboratory. Each single hexagonal ring of the boron-nitrogen structure, for instance the one marked by the green circle in the figure a, consists of three brighter nitrogen atoms and three darker boron atoms. The lower (b) image is corrected for distortion.
Credit: Department of Energy, Oak Ridge National Laboratory

Using the latest in aberration-corrected electron microscopy, researchers at the Department of Energy's Oak Ridge National Laboratory and their colleagues have obtained the first images that distinguish individual light atoms such as boron, carbon, nitrogen and oxygen.

Related Articles


The ORNL images were obtained with a Z-contrast scanning transmission electron microscope (STEM). Individual atoms of carbon, boron, nitrogen and oxygen--all of which have low atomic numbers--were resolved on a single-layer boron nitride sample.

"This research marks the first instance in which every atom in a significant part of a non-periodic material has been imaged and chemically identified," said Materials Science and Technology Division researcher Stephen Pennycook. "It represents another accomplishment of the combined technologies of Z-contract STEM and aberration correction."

Pennycook and ORNL colleague Matthew Chisholm were joined by a team that includes Sokrates Pantelides, Mark Oxley and Timothy Pennycook of Vanderbilt University and ORNL; Valeria Nicolosi at United Kingdom's Oxford University; and Ondrej Krivanek, George Corbin, Niklas Dellby, Matt Murfitt, Chris Own and Zotlan Szilagyi of Nion Company, which designed and built the microscope. The team's Z-contrast STEM analysis is described in an article published March 25 in the journal Nature.

The new high-resolution imaging technique enables materials researchers to analyze, atom by atom, the molecular structure of experimental materials and discern structural defects in those materials. Defects introduced into a material--for example, the placement of an impurity atom or molecule in the material's structure--are often responsible for the material's properties.

The group analyzed a monolayer hexagonal boron nitride sample prepared at Oxford University and was able to find and identify three types of atomic substitutions--carbon atoms substituting for boron, carbon substituting for nitrogen and oxygen substituting for nitrogen. Boron, carbon, nitrogen and oxygen have atomic numbers--or Z values-- of five, six, seven and eight, respectively.

The annular dark field analysis experiments were performed on a 100-kilovolt Nion UltraSTEM microscope optimized for low-voltage operation at 60 kilovolts.

Aberration correction, in which distortions and artifacts caused by lens imperfections and environmental effects are computationally filtered and corrected, was conceived decades ago but only relatively recently made possible by advances in computing. Aided by the technology, ORNL's Electron Microscopy group set a resolution record in 2004 with the laboratory's 300-kilovolt STEM.

The recent advance comes at a much lower voltage, for a reason.

"Operating at 60 kilovolts allows us to avoid atom-displacement damage to the sample, which is encountered with low Z-value atoms above about 80 kilovolts," Pennycook said. "You could not perform this experiment with a 300-kilovolt STEM."

Armed with the high-resolution images, materials, chemical and nanoscience researchers and theorists can design more accurate computational simulations to predict the behavior of advanced materials, which are key to meeting research challenges that include energy storage and energy efficient technologies.

The research was funded by the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ondrej L. Krivanek, Matthew F. Chisholm, Valeria Nicolosi, Timothy J. Pennycook, George J. Corbin, Niklas Dellby, Matthew F. Murfitt, Christopher S. Own, Zoltan S. Szilagyi, Mark P. Oxley, Sokrates T. Pantelides, Stephen J. Pennycook. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature, 2010; 464 (7288): 571 DOI: 10.1038/nature08879

Cite This Page:

DOE/Oak Ridge National Laboratory. "Individual light atoms, such as carbon and oxygen, identified with new microscope." ScienceDaily. ScienceDaily, 28 March 2010. <www.sciencedaily.com/releases/2010/03/100324162621.htm>.
DOE/Oak Ridge National Laboratory. (2010, March 28). Individual light atoms, such as carbon and oxygen, identified with new microscope. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2010/03/100324162621.htm
DOE/Oak Ridge National Laboratory. "Individual light atoms, such as carbon and oxygen, identified with new microscope." ScienceDaily. www.sciencedaily.com/releases/2010/03/100324162621.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins