Featured Research

from universities, journals, and other organizations

How are droplets displaced by ultrasounds?

Date:
April 3, 2010
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Understanding the physical mechanisms that enable a droplet to be displaced by propagating an acoustic wave along the substrate on which it lies is the hurdle that has just been overcome by researchers. They have succeeded in detailing the structure of the ultrasounds that propagate in a droplet and which lead to its oscillation and then its displacement.

Understanding the physical mechanisms that enable a droplet to be displaced by propagating an acoustic wave along the substrate on which it lies is the hurdle that has been overcome by researchers from the Institut d'Electronique de Microélectronique et Nanotechnologies (CNRS/Université Lille 1/Ecole Centrale de Lille). They have succeeded in detailing the structure of the ultrasounds that propagate in a droplet and which lead to its oscillation and then its displacement. These results, published in the journal Physical Review E, could be profitably employed to optimize biochemical analyses conducted on DNA chips, which use droplets of biological liquids.

Researchers from Lille have studied the dynamics of a small droplet resting on a substrate, along which an acoustic wave[1] is propagated, comparable to the first waves detected by seismographs during seismic tremors. What is the effect of this mini-earthquake on the droplet? The researchers observed (shot with a rapid 5000 images per second camera) that the droplet is displaced in the direction of propagation of the wave at a velocity that can attain several centimeters a second. Furthermore, the shape of the droplet is modified: the droplet begins to oscillate and is periodically stretched upwards and then flattened.

Why these dynamics? The propagated acoustic waves have the unique characteristic of being displaced solely on the surface of the substrate, without penetrating into it. Consequently, they do not undergo any deviation or reflection and are thus only attenuated to a very small extent. Their amplitude, of the order of a nanometer, and their frequency, around 20 MHz[2] , produce significant accelerations: the substrate undergoes local deformations of 1 to 2 nanometers repeated at a very short interval, which makes the droplet oscillate and deform and brings about its displacement in the direction of propagation of the wave.

Although this phenomenon had already been observed, the physical mechanisms behind it were not understood. The team from the Institut d'Electronique de Microélectronique et Nanotechnologies (CNRS/Université Lille 1/Ecole Centrale de Lille), which includes microsystem designers, acousticians and specialists in fluid dynamics, have identified the acoustic and fluidic mechanisms leading to these surprising oscillatory dynamics by conducting a quantitative experimental study and numerical simulations, which have enabled them to elucidate the detailed structure of the acoustic wave within the droplet. They have shown that the acoustic wave is partly radiated in the liquid and, due to the viscosity of the liquid, a phenomenon known as "acoustic streaming" is created, comparable to the phenomenon that a slight air current produces near to a powerful loudspeaker. In this way, the acoustic wave can produce a constant, directional flow. There is also another phenomenon that comes into play: if the acoustic wave is only partially attenuated by the viscosity of the liquid, it manages to reach the interface between the air and the liquid of the droplet. The conservation of the quantity of movement at this interface and the difference of acoustic indexes between water and air then induce a radiation pressure that deforms the interface. This pressure, coupled to the specific dynamics of the droplet, creates oscillations.

There are many applications for this phenomenon. Firstly, by displacing small droplets, certain parts of a surface can be dried selectively. This property could be useful when droplets are confined in certain zones of a surface that is difficult to access. Droplets are moreover increasingly used for carrying out biochemical reactions on DNA chips. This technique makes it possible for example, with a very small quantity of biological liquid, to test a whole series of drug candidates or to carry out multiple enzymatic reactions. The interest is to significantly cut testing costs. However, due to the small size of the droplets, it is difficult to ensure correct mixing and the reactions are very slow. The use of acoustic waves makes it possible to mix the components continuously and thus increase the reaction rate. By understanding how acoustic waves act on the displacement of droplets, researchers could optimize such reactions.

1 - Ultrasonic surface acoustic wave or Rayleigh wave.
2 - Also known as ultrasonic waves, because they are of higher frequency than audible waves, between 20 Hz and 20 kHz.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Brunet et al. Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: A quantitative study. Physical Review E, 2010; 81 (3): 036315 DOI: 10.1103/PhysRevE.81.036315

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "How are droplets displaced by ultrasounds?." ScienceDaily. ScienceDaily, 3 April 2010. <www.sciencedaily.com/releases/2010/03/100331152650.htm>.
CNRS (Délégation Paris Michel-Ange). (2010, April 3). How are droplets displaced by ultrasounds?. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/03/100331152650.htm
CNRS (Délégation Paris Michel-Ange). "How are droplets displaced by ultrasounds?." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331152650.htm (accessed September 2, 2014).

Share This



More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Halliburton Reaches $1B Gulf Spill Settlement

Halliburton Reaches $1B Gulf Spill Settlement

AP (Sep. 2, 2014) — Halliburton's agreement to pay more than $1 billion to settle numerous claims involving the 2010 BP oil spill could be a way to diminish years of costly litigation. A federal judge still has to approve the settlement. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) — Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins