Featured Research

from universities, journals, and other organizations

Researchers holding steady in an atomic-scale tug-of-war

Date:
April 6, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
A research team has built an ultra-stable instrument for tugging on chains of atoms, an instrument that can maneuver and hold the position of an atomic probe to within 5 picometers.

A quantum mechanics-based simulation demonstrates how a new NIST instrument can delicately pull a chain of atoms apart. The chart records quantum jumps in conductivity as a gold contact is stretched 0.6 nanometer. The junction transitions from a 2-dimensional structure to a one-dimensional single-atom chain, with a corresponding drop in conductivity. Following the last point, at a wire length of 3.97 nm, the chain broke.
Credit: Tavazza, NIST

How hard do you have to pull on a single atom of -- let's say -- gold to detach it from the end of a chain of like atoms?* It's a measure of the astonishing progress in nanotechnology that questions that once would have interested only physicists or chemists are now being asked by engineers. To help with the answers, a research team at the National Institute of Standards and Technology (NIST) has built an ultra-stable instrument for tugging on chains of atoms, an instrument that can maneuver and hold the position of an atomic probe to within 5 picometers, or 0.000 000 000 5 centimeters.

The basic experiment uses a NIST-designed instrument inspired by the scanning tunneling microscope (STM). The NIST instrument uses as a probe a fine, pure gold wire drawn out to a sharp tip. The probe is touched to a flat gold surface, causing the tip and surface atoms to bond, and gradually pulled away until a single-atom chain is formed and then breaks. The trick is to do this with such exquisite positional control that you can tell when the last two atoms are about to separate, and hold everything steady; you can at that point measure the stiffness and electrical conductance of the single-atom chain, before breaking it to measure its strength.

The NIST team used a combination of clever design and obsessive attention to sources of error to achieve results that otherwise would require heroic efforts at vibration isolation, according to engineer Jon Pratt. A fiber-optic system mounted just next to the probe uses the same gold surface touched by the probe as one mirror in a classic optical interferometer capable of detecting changes in movement far smaller than the wavelength of light. The signal from the interferometer is used to control the gap between surface and probe. Simultaneously, a tiny electric current flowing between the surface and probe is measured to determine when the junction has narrowed to the last two atoms in contact. Because there are so few atoms involved, electronics can register, with single-atom sensitivity, the distinct jumps in conductivity as the junction between probe and surface narrows.

The new instrument can be paired with a parallel research effort at NIST to create an accurate atomic-scale force sensor -- for example, a microscopic diving-board-like cantilever whose stiffness has been calibrated on NIST's Electrostatic Force Balance. Physicist Douglas Smith says the combination should make possible the direct measurement of force between two gold atoms in a way traceable to national measurement standards. And because any two gold atoms are essentially identical, that would give other researchers a direct method of calibrating their equipment. "We're after something that people that do this kind of measurement could use as a benchmark to calibrate their instruments without having to go to all the trouble we do, " Smith says. "What if the experiment you're performing calibrates itself because the measurement you're making has intrinsic values? You can make an electrical measurement that's fairly easy and by observing conductance you can tell when you've gotten to this single-atom chain. Then you can make your mechanical measurements knowing what those forces should be and recalibrate your instrument accordingly."

In addition to its application to nanoscale mechanics, say the NIST team, their system's long-term stability at the picometer scale has promise for studying the movement of electrons in one-dimensional systems and single-molecule spectroscopy.

* The answer, calculated from atomic models, should be something under 2 nanonewtons, or less than 0.000 000 007 ounces of force.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. D.T. Smith, J.R. Pratt, F. Tavazza, L.E. Levine and A.M. Chaka. An ultra-stable platform for the study of single-atom chains. J. Appl. Phys., March 2010 (in press)

Cite This Page:

National Institute of Standards and Technology (NIST). "Researchers holding steady in an atomic-scale tug-of-war." ScienceDaily. ScienceDaily, 6 April 2010. <www.sciencedaily.com/releases/2010/04/100401130246.htm>.
National Institute of Standards and Technology (NIST). (2010, April 6). Researchers holding steady in an atomic-scale tug-of-war. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/04/100401130246.htm
National Institute of Standards and Technology (NIST). "Researchers holding steady in an atomic-scale tug-of-war." ScienceDaily. www.sciencedaily.com/releases/2010/04/100401130246.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins