Featured Research

from universities, journals, and other organizations

Scientists address 'wrinkles' in transparent film development

Date:
April 4, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
A closer look at a promising nanotube coating that might one day improve solar cells has turned up a few unexpected wrinkles, according to new research.

This atomic-force microscopy image shows wrinkling in a single-wall carbon nanotube membrane; the inset shows an optical reflection micrograph of the membrane without any strain. The random arrangement of the nanotubes shown in the inset creates conductivity, but wrinkling can disrupt that. Each image is 40 micrometers in width.
Credit: NIST

A closer look at a promising nanotube coating that might one day improve solar cells has turned up a few unexpected wrinkles, according to new research conducted at the National Institute of Standards and Technology (NIST) and North Dakota State University (NDSU) -- research that also may help scientists iron out a solution.

Related Articles


The scientists have found that coatings made of single-walled carbon nanotubes (SWCNTs) are not quite as deformable as hoped, implying that they are not an easy answer to problems that other materials present. Though films made of nanotubes possess many desirable properties, the team's findings reveal some issues that might need to be addressed before the full potential of these coatings is realized.

"The irony of these nanotube coatings is that they can change when they bend," says Erik Hobbie, now the director of the Materials and Nanotechnology program at NDSU. "Under modest strains, these films can develop irreversible changes in nanotube arrangement that reduce their conductivity. Our work is the first to suggest this, and it opens up new approaches to engineering the films in ways that minimize these effects."

High on the wish list of the solar power industry is a cheap, flexible, transparent coating that can conduct electricity. If this combination of properties can somehow be realized in a single material, solar cells might become far less expensive, and manufacturers might be able to put them in unexpected places -- such as articles of clothing. Transparent conductive coatings can be made of indium-tin oxide, but their rigidity and high cost make them less practical for widespread use.

Carbon nanotubes are one possible solution. Nanotubes, which resemble microscopic rolls of chicken wire, are inexpensive, easy to produce, and can be formed en masse into transparent conductive coatings whose weblike inner structure makes them not only strong but deformable, like paper or fabric. However, the team's research found that some kinds of stretching cause microscopic 'wrinkles' in the coating that disrupt the random arrangement of the nanotubes, which is what makes the coating conduct electricity.

"You want the nanotubes to stay randomly arranged," Hobbie says. "But when a nanotube coating wrinkles, it can lose the connected network that gives it conductivity. Instead, the nanotubes bundle irreversibly into ropelike formations."

Hobbie says the study suggests a few ways to address the problem, however. The films might be kept thin enough so the wrinkling might be avoided in the first place, or designers could engineer a second interpenetrating polymer network that would support the nanotube network, to keep it from changing too much in response to stress. "These approaches might allow us to make coatings of nanotubes that could withstand large strains while retaining the traits we want," Hobbie says.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. E. K. Hobbie, D. O. Simien, J. A. Fagan, J. Y. Huh, J. Y. Chung, S. D. Hudson, J. Obrzut, J. F. Douglas, C. M. Stafford. Wrinkling and Strain Softening in Single-Wall Carbon Nanotube Membranes. Physical Review Letters, 2010; 104 (12): 125505 DOI: 10.1103/PhysRevLett.104.125505

Cite This Page:

National Institute of Standards and Technology (NIST). "Scientists address 'wrinkles' in transparent film development." ScienceDaily. ScienceDaily, 4 April 2010. <www.sciencedaily.com/releases/2010/04/100401130340.htm>.
National Institute of Standards and Technology (NIST). (2010, April 4). Scientists address 'wrinkles' in transparent film development. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2010/04/100401130340.htm
National Institute of Standards and Technology (NIST). "Scientists address 'wrinkles' in transparent film development." ScienceDaily. www.sciencedaily.com/releases/2010/04/100401130340.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins