Featured Research

from universities, journals, and other organizations

Early steps in Parkinson's pathology revealed

Date:
April 6, 2010
Source:
Cell Press
Summary:
Although the cause of Parkinson's disease remains a mystery, scientists now have a better understanding of the earliest stages of abnormal aggregation of a key disease-associated protein. The research provides new insight into the first steps in the formation of neurotoxic structures called Lewy bodies that are the hallmark of the Parkinson's brain.

Although the cause of Parkinson's disease remains a mystery, scientists now have a better understanding of the earliest stages of abnormal aggregation of a key disease-associated protein. The research, published online on April 6th in Biophysical Journal, provides new insight into the first steps in the formation of neurotoxic structures called Lewy bodies that are the hallmark of the Parkinson's brain.

Parkinson's disease is a neurodegenerative disorder that impairs movement and has been linked with a pathological accumulation of α-Synuclein protein inside of neurons. α-Synuclein is a small, abundant protein that is intrinsically present in a disordered or "unfolded" state but displays a remarkable structural versatility. Previous research has shown that large fibrous clumps of α-Synuclein are present in Lewy bodies in the brains of Parkinson's patients.

"α-Synuclein can readily adopt different structures and, prior to formation of the large fibrous form, forms early small intermediates called oligomers," explains senior study author Dr. Yves Engelborghs from the Laboratory of Biomolecular Dynamics at the University of Leuven in Belgium. "Because the potential role of these intermediates in cell death has been established, detection and characterization of early oligomeric species is very important for understanding Parkinson's pathology."

The formation of α-Synuclein oligomers prior to the formation of larger fibrils has been shown before, but the many forms and transient nature of α-Synuclein oligomers has made identification and characterization of the amount, size and conformation of these early intermediates very difficult. Dr. Engelborghs and colleagues used a sophisticated and sensitive imaging technique called fluorescence correlation spectroscopy to follow the disappearance of individual α-Synuclein molecules (called monomers) and the formation of early oligomers during the aggregation process.

The researchers characterized the kinetics of oligomer formation and demonstrated that the formation of early oligomers was concentration dependent. Using a different technique, they went on to show that oligomer formation was accompanied by a conformational change that preceded formation of higher order structures. Taken together, the results provide new insight into the initial steps of α-Synuclein aggregation.

Researchers include Sangeeta Nath, Jessika Meuvis, Jelle Hendrix, Shaun A. Carl and Yves Engelborghs, of University of Leuven, Leuven, Belgium.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sangeeta Nath, Jessika Meuvis, Jelle Hendrix, Shaun A. Carl, Yves Engelborghs. Early Aggregation Steps in α-Synuclein as Measured by FCS and FRET: Evidence for a Contagious Conformational Change. Biophysical Journal, 7 April 2010; 98(7) pp. 1302 - 1311 DOI: 10.1016/j.bpj.2009.12.4290

Cite This Page:

Cell Press. "Early steps in Parkinson's pathology revealed." ScienceDaily. ScienceDaily, 6 April 2010. <www.sciencedaily.com/releases/2010/04/100406125541.htm>.
Cell Press. (2010, April 6). Early steps in Parkinson's pathology revealed. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/04/100406125541.htm
Cell Press. "Early steps in Parkinson's pathology revealed." ScienceDaily. www.sciencedaily.com/releases/2010/04/100406125541.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins