Featured Research

from universities, journals, and other organizations

How disorder at microscopic level reveals important changes in behavior of matter

Date:
April 8, 2010
Source:
Universitat Politècnica de Catalunya
Summary:
Researchers describe the new trends in research on disordered systems using ultracold gases that could have important consequences both for understanding complex physics processes and for building future quantum simulators and computers.

Researchers from the Institute of Photonic Sciences (ICFO, Barcelona) and the Institute of Optics (IO, Palaiseau) describe in Nature Physics the new trends in research on disordered systems using ultracold gases that could have important consequences both for understanding complex physics processes and for building future quantum simulators and computers.

An article published in the scientific journal Nature Physics by Maciej Lewenstein, ICREA researcher at the Institute of Photonic Sciences (ICFO, Barcelona), affiliated to the Universitat Politècnica de Catalunya (UPC)-Barcelona Tech, and Laurent Sánchez-Palencia, from the Institute of Optics (IO, Palaiseau), provides an overview of the recent history of the field of ultracold gases, one of the safest bets in quantum information implementation, with ambitious projects such as quantum computers and simulators. These simulators offer the best tools for studying disordered systems, which are of the utmost interest in the field of physics, but too complex to be studied analytically.

The article describes the fascinating prospects for this line of research, primarily based on the theoretical predictions made by Lewenstein and Sánchez-Palencia about a new phenomenon known as "disorder-induced order."

Disorder in the physical world is defined as small impurities distributed at random. It is impossible to completely eliminate it in real physical systems, but its effect on the microscopic components of matter is not as negative as it was previously thought to be. Lewenstein and Sánchez-Palencia explain how disorder can lead to new quantum states of matter, such as quantum glass or "dirty" superconductors, which can provide a major contribution towards quantum information processing. One of the differences between macroscopic and microscopic objects is that the former, such as billiard or soccer balls, if we neglect the phenomenon of friction, can roll indefinitely on a flat surface, even if it has small modulations or rough areas. However, they stop when they run into a wall or a hole in the ground.

The situation is completely different in the microscopic world. Quantum particles often behave as wave packets, which enables them to use unique strategies: when they move through a medium with obstacles, they distribute their presence down all possible paths. These possible paths interfere with each other, and if the interference is constructive, the particle reinforces its presence in places it would not have reached if we had been dealing with regular particles. This is how obstacles are avoided in the microscopic world.

However, there is one thing that these fascinating particles cannot resist: disorder, or small rough areas. A group of randomly distributed obstacles, even if they are minute, leaves the particle "out of commission," unable to advance. In this case, its own wave packet works against it, since the irregularity in the order of the obstacles leads the interference between paths to be predominantly destructive, and thus the presence of the particle in most of the points in the box disappears and the particle is only located in one specific point.

This phenomenon is referred to as Anderson Localization, described by the Nobel laureate Philip Warren Anderson more than 50 years ago. Anderson's research laid the groundwork for the development of the information age: the localization processes in disordered systems are what enable us to store data in computer memories.

Maciej Lewenstein is the author of an earlier article, published in 2003, predicting Anderson Localization in ultracold atomic gases with controlled disorder. As Lewenstein and Sánchez-Palencia explain, these localization phenomena in ultracold gases have been subjected to experimental observation. Ultracold atomic gases are of the utmost interest for quantum physicists because they enable macroscopic observation of the microscopic behavior of matter, thus constituting perfect simulators for quantum phenomena. In addition, it is relatively easy to design and control disorder in these gases, and hence they provide the ideal tool for studying an entire family of disorder-induced order phenomena.

Further knowledge of disordered systems could lead to important applications: if computers as we know them today are the result of the knowledge acquired to date about the conductive and insulating properties of matter-stemming from Anderson's work and other studies of disordered systems-it is entirely possible that the quantum computers of the future will process information by managing disorder with ultracold systems.

This induced disorder is what the authors describe in their article, and it can be created and designed on demand by using lasers. The researchers also explain that disorder can lead to new quantum states of matter, such as quantum glass or what are referred to as "dirty" superconductors, a kind of superconductor to which impurities have been added to improve its performance.


Story Source:

The above story is based on materials provided by Universitat Politècnica de Catalunya. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laurent Sanchez-Palencia, Maciej Lewenstein. Disordered quantum gases under control. Nature Physics, 2010; 6 (2): 87 DOI: 10.1038/nphys1507

Cite This Page:

Universitat Politècnica de Catalunya. "How disorder at microscopic level reveals important changes in behavior of matter." ScienceDaily. ScienceDaily, 8 April 2010. <www.sciencedaily.com/releases/2010/04/100407123348.htm>.
Universitat Politècnica de Catalunya. (2010, April 8). How disorder at microscopic level reveals important changes in behavior of matter. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/04/100407123348.htm
Universitat Politècnica de Catalunya. "How disorder at microscopic level reveals important changes in behavior of matter." ScienceDaily. www.sciencedaily.com/releases/2010/04/100407123348.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins