Featured Research

from universities, journals, and other organizations

Human enzyme that breaks down potentially toxic nanomaterials identified

Date:
April 8, 2010
Source:
University of Pittsburgh
Summary:
A new study provides the first identification of a human enzyme that can biodegrade carbon nanotubes -- the superstrong materials found in products from electronics to plastics -- and in laboratory tests offset the potentially damaging health effects of being exposed to the tiny components, according to new findings.

An international study based at the University of Pittsburgh provides the first identification of a human enzyme that can biodegrade carbon nanotubes-the superstrong materials found in products from electronics to plastics-and in laboratory tests offset the potentially damaging health effects of being exposed to the tiny components, according to findings published online in Nature Nanotechnology.

Related Articles


The results could open the door to the use of carbon nanotubes as a safe drug-delivery tool and also could lead to the development of a natural treatment for people exposed to nanotubes, either in the environment or the workplace, the team reported. The researchers found that carbon nanotubes degraded with the human enzyme "myeloperoxidase" (hMPO) did not produce the lung inflammation that intact nanotubes have been shown to cause. Furthermore, neutrophils, the white blood cells that contain and emit hMPO to kill invading microorganisms, can be directed to attack carbon nanotubes specifically.

"The successful medical application of carbon nanotubes rely on their effective breakdown in the body, but carbon nanotubes also are notoriously durable," said lead researcher Valerian Kagan, a professor and vice chair in the Department of Environmental and Occupational Health in Pitt's Graduate School of Public Health."The ability of hMPO to biodegrade carbon nanotubes reveals that this breakdown is part of a natural inflammatory response. The next step is to develop methods for stimulating that inflammatory response and reproducing the biodegradation process inside a living organism."

Kagan and his research group led the team of more than 20 researchers from four universities along with the laboratory groups of Alexander Star, an assistant professor of chemistry in Pitt's School of Arts and Sciences, and Judith Klein-Seethharaman, an assistant professor of structural biology in Pitt's School of Medicine. Additional Pitt researchers included Yulia Tyurina, a Pitt assistant professor of environmental and occupational health in the Graduate School of Public Health, and Donna Stolz, an associate professor of cell biology and physiology in Pitt's medical school; other researchers are from Sweden's Karolinska Institute, Trinity College in Ireland, the National Institute for Occupational Safety and Health, and West Virginia University.

Carbon nanotubes are one-atom thick rolls of graphite 100,000 times smaller than a human hair yet stronger than steel. They are used to reinforce plastics, ceramics, or concrete; are excellent conductors of electricity and heat; and are sensitive chemical sensors. However, a nanotube's surface also contains thousands of atoms that could react with the human body in unknown ways. Tests on mice have shown that nanotube inhalation results in severe lung inflammation coupled with an early onset of fibrosis. The tubes' durability raises additional concern about proper disposal and cleanup. In 2008, Star and Kagan reported in "Nano Letters" that carbon nanotubes deteriorate when exposed to the plant enzyme horseradish peroxidase, but their research focused on cleanup after accidental spills during manufacturing or in the environment.

For the current study, the researchers focused on human MPO because it works via the release of strong acids and oxidants-similar to the chemicals used to break down carbon nanotubes. They first incubated short, single-walled nanotubes in an hMPO and hydrogen peroxide solution-the hydrogen peroxide sparks and sustains hMPO activity-for 24 hours, after which the structure and bulk of the tube had completely degenerated. The nanotubes degenerated even faster when sodium chloride was added to the solution to produce hypochlorite, a strong oxidizing compound known to break down nanotubes.

After establishing the effectiveness of hMPO in degrading carbon nanotubes, the team developed a technique to prompt neutrophils to attack nanotubes by capturing them and exposing them to the enzyme. They implanted a sample of nanotubes with antibodies known as immunoglobulin G (IgG), which made them specific neutrophil targets. After 12 hours, 100 percent of IgG nanotubes were degraded versus 30 percent of those without IgG. The researchers also tested the ability of macrophages, another white blood cell, to break down nanotubes, but after two days, only 50 percent of the tubes had degenerated.

In subsequent laboratory tests, lung tissue exposed to the degraded nanotubes for seven days exhibited negligible change when compared to unexposed tissue. On the other hand, tissue exposed to untreated nanotubes developed severe inflammation.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kagan et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotechnology, 2010; DOI: 10.1038/nnano.2010.44

Cite This Page:

University of Pittsburgh. "Human enzyme that breaks down potentially toxic nanomaterials identified." ScienceDaily. ScienceDaily, 8 April 2010. <www.sciencedaily.com/releases/2010/04/100407155651.htm>.
University of Pittsburgh. (2010, April 8). Human enzyme that breaks down potentially toxic nanomaterials identified. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2010/04/100407155651.htm
University of Pittsburgh. "Human enzyme that breaks down potentially toxic nanomaterials identified." ScienceDaily. www.sciencedaily.com/releases/2010/04/100407155651.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins