Featured Research

from universities, journals, and other organizations

Negative mass and high speed: How electrons go their own ways

Date:
April 19, 2010
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Physicists report that electrons in semiconductor crystals have a negative inertial mass when strongly accelerated in an electric field.

Wilhelm Kuehn aligning the experiment.
Credit: Photo by Uwe Bellhδuser

Physicists of the Max Born Institute in Berlin report in the latest issue of Physical Review Letters that electrons in semiconductor crystals have a negative inertial mass when strongly accelerated in an electric field.

Related Articles


Isaac Newton found in the 17th century that a force causes a body to accelerate. The inertial mass of the body is the ratio between force and acceleration, thus, given the same force, a light body is accelerated more strongly than a heavy body. A body's mass is positive, meaning that the acceleration is in the same direction as the force. Charged elementary particles as the free electron, which has a mass of only 10-30 kilograms, can be accelerated in electric fields to extremely high speeds.

If the electric field is small, the motion of electrons in crystals is governed by the same laws. In this regime, the mass of a crystal electron is only a small part of the mass of a free electron.

Researchers from the Max Born Institute in Berlin have now demonstrated that crystal electrons in extremely high electric fields exhibit a completely different behavior. Their mass even becomes negative. They report in the latest issue of Physical Review Letters that the electron is accelerated within the extremely short time of 100 femtoseconds = 0.000 000 000 000 1 seconds to a speed of 4 million kilometers per hour. Afterwards the electron comes to a stop and even moves backward. This means that the acceleration is in opposite direction to the force, which can only be explained by a negative inertial mass of the electron.

In the experiments, electrons in the semiconductor crystal gallium arsenide are accelerated by an extremely short electrical pulse with a field strength of 30 million Volts per meter. At the same time the speed of the electrons is measured with high precision as a function of time. The duration of the electric pulse is only 300 femtoseconds. This extremely short duration is essential as otherwise the crystal could be damaged.

The new results agree with calculations of the Nobel Prize winner Felix Bloch undertook more than 80 years ago. They open up a new regime of charge transport with new possibilities for future microelectronics devices. The observed frequencies are in the terahertz range (1 THz = 1000 GHz = 1012Hz), about 1000 times higher than the clock rate of the newest PCs.


Story Source:

The above story is based on materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey. Coherent Ballistic Motion of Electrons in a Periodic Potential. Physical Review Letters, 2010; 104 (14): 146602 DOI: 10.1103/PhysRevLett.104.146602

Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "Negative mass and high speed: How electrons go their own ways." ScienceDaily. ScienceDaily, 19 April 2010. <www.sciencedaily.com/releases/2010/04/100412084525.htm>.
Forschungsverbund Berlin e.V. (FVB). (2010, April 19). Negative mass and high speed: How electrons go their own ways. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/04/100412084525.htm
Forschungsverbund Berlin e.V. (FVB). "Negative mass and high speed: How electrons go their own ways." ScienceDaily. www.sciencedaily.com/releases/2010/04/100412084525.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins