Featured Research

from universities, journals, and other organizations

Negative mass and high speed: How electrons go their own ways

Date:
April 19, 2010
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Physicists report that electrons in semiconductor crystals have a negative inertial mass when strongly accelerated in an electric field.

Wilhelm Kuehn aligning the experiment.
Credit: Photo by Uwe Bellhδuser

Physicists of the Max Born Institute in Berlin report in the latest issue of Physical Review Letters that electrons in semiconductor crystals have a negative inertial mass when strongly accelerated in an electric field.

Isaac Newton found in the 17th century that a force causes a body to accelerate. The inertial mass of the body is the ratio between force and acceleration, thus, given the same force, a light body is accelerated more strongly than a heavy body. A body's mass is positive, meaning that the acceleration is in the same direction as the force. Charged elementary particles as the free electron, which has a mass of only 10-30 kilograms, can be accelerated in electric fields to extremely high speeds.

If the electric field is small, the motion of electrons in crystals is governed by the same laws. In this regime, the mass of a crystal electron is only a small part of the mass of a free electron.

Researchers from the Max Born Institute in Berlin have now demonstrated that crystal electrons in extremely high electric fields exhibit a completely different behavior. Their mass even becomes negative. They report in the latest issue of Physical Review Letters that the electron is accelerated within the extremely short time of 100 femtoseconds = 0.000 000 000 000 1 seconds to a speed of 4 million kilometers per hour. Afterwards the electron comes to a stop and even moves backward. This means that the acceleration is in opposite direction to the force, which can only be explained by a negative inertial mass of the electron.

In the experiments, electrons in the semiconductor crystal gallium arsenide are accelerated by an extremely short electrical pulse with a field strength of 30 million Volts per meter. At the same time the speed of the electrons is measured with high precision as a function of time. The duration of the electric pulse is only 300 femtoseconds. This extremely short duration is essential as otherwise the crystal could be damaged.

The new results agree with calculations of the Nobel Prize winner Felix Bloch undertook more than 80 years ago. They open up a new regime of charge transport with new possibilities for future microelectronics devices. The observed frequencies are in the terahertz range (1 THz = 1000 GHz = 1012Hz), about 1000 times higher than the clock rate of the newest PCs.


Story Source:

The above story is based on materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey. Coherent Ballistic Motion of Electrons in a Periodic Potential. Physical Review Letters, 2010; 104 (14): 146602 DOI: 10.1103/PhysRevLett.104.146602

Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "Negative mass and high speed: How electrons go their own ways." ScienceDaily. ScienceDaily, 19 April 2010. <www.sciencedaily.com/releases/2010/04/100412084525.htm>.
Forschungsverbund Berlin e.V. (FVB). (2010, April 19). Negative mass and high speed: How electrons go their own ways. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/04/100412084525.htm
Forschungsverbund Berlin e.V. (FVB). "Negative mass and high speed: How electrons go their own ways." ScienceDaily. www.sciencedaily.com/releases/2010/04/100412084525.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) — Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins