Featured Research

from universities, journals, and other organizations

Patients gain limb movement years after stroke with help of robotic aids

Date:
April 18, 2010
Source:
Brown University
Summary:
A clinical study has found that stroke patients can regain limb movement long after an injury through intensive therapy with specially trained personnel and newly created robotic aids.

Patients show modest yet meaningful gains in limb movement and an improved outlook on life years after suffering a stroke, a major clinical study has found. The paper, published online this week in the New England Journal of Medicine, provides the best evidence yet that stroke sufferers in a controlled study can regain limb movement long after an injury, through intensive therapy with specially trained personnel and newly created robotic aids.

"There are about 6.4 million stroke patients in the U.S. with chronic deficits. We've shown that with the right therapy, they can see improvements in movement, everyday function, and quality of life," said Albert Lo, assistant professor of neurology at Brown University and the study's lead author. "This is giving stroke survivors new hope."

The three-year randomized control trial by the U.S. Department of Veterans Affairs enrolled 127 veterans at four VA sites. All had suffered a stroke at least six months earlier and had moderate to severe impairment of an arm. On average, the strokes had occurred nearly five years before; one-third of the victims had suffered multiple strokes. Patients typically get rehabilitation therapy only during the first six months or so after a stroke. Conventional thinking has been that long-term stroke survivors cannot accrue additional meaningful benefits after that time. Recent studies, though, have begun to suggest otherwise.

The therapy involved repetitive, guided movement, three times a week, for three months. One group of patients underwent upper-limb therapy with the use of robots designed at the Massachusetts Institute of Technology. Others did similar high-intensity exercises with a therapist. At each session, the patients performed 1,024 upper-arm movements, a substantially more intense workout than in a conventional rehabilitation session. A third, smaller group had only "usual care" -- they received general health care but no specific therapy for their stroke-damaged upper limb.

Patients who had 12 weeks of robot-assisted therapy showed statistically significant improved quality of life (an 8-point improvement on the Stroke Impact Scale) compared to those who had no additional therapy. At six months, patients aided by the robotic therapy showed clinically significant upper-arm function (3-point improvement on the Fugl-Meyer Scale) compared to the usual care group.

To measure the impact on everyday life, researchers asked patients a battery of questions: how well they could cut food with a fork and knife, open jars, or tie their shoes. Patients were also asked about activities not directly related to their arms, such as walking or climbing stairs. Most patients in the therapy groups reported across-the-board progress, compared with no progress in the control group. (The control group was enrolled in intensive therapy after the study ended.)

The team theorizes that boosting arm function helped patients be more active overall, which led to wider health improvements. "We believe that by gaining more function and better control of their affected arms, patients were able to get out and do more, translating their motor benefits into additional meaningful social activity and participation," said Lo, also a neurologist at the Providence VA Medical Center.

The study featured a robot called the MIT-Manus, which had been tested in a few smaller trials. Users sit at a table with their affected arm attached to the device. They follow therapists' instructions or computerized prompts and move a cursor on a screen -- somewhat like a video game -- and try to perform a task with their arm. The robot senses their movement and helps as needed.

"The robots provide 'power steering' for the arms -- just enough assistance to allow people to move," said George Wittenberg, a neurologist at the VA and the study's lead investigator in Baltimore.

The intensive therapy tested in the study, with or without robots, takes advantage of neuroplasticity -- the ability of the adult brain to "rewire" itself. When neurons die because of a stroke, other brain cells, prompted by assisted body movements, begin compensating for the lost function.

"One of the purposes of this study was to upend the conventional dogma that stroke victims can't recover physiological function," Lo said.

The study took place at VA medical centers in West Haven, Conn., Baltimore, Gainesville, Fla. and Seattle. The VA's Cooperative Studies Program and Rehabilitation Research and Development Service funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Albert C. Lo et al. Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. New England Journal of Medicine, April 16, 2010 DOI: 10.1056/NEJMoa0911341

Cite This Page:

Brown University. "Patients gain limb movement years after stroke with help of robotic aids." ScienceDaily. ScienceDaily, 18 April 2010. <www.sciencedaily.com/releases/2010/04/100416144529.htm>.
Brown University. (2010, April 18). Patients gain limb movement years after stroke with help of robotic aids. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2010/04/100416144529.htm
Brown University. "Patients gain limb movement years after stroke with help of robotic aids." ScienceDaily. www.sciencedaily.com/releases/2010/04/100416144529.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins