Featured Research

from universities, journals, and other organizations

Quantum computing closer: Properties of hybrid light-matter particles discovered

Date:
April 20, 2010
Source:
Cardiff University
Summary:
Physicists have discovered properties of hybrid light-matter particles, existing in the solid state matrix, which could one day lead to faster and more efficient computers and telecommunications.

A team from Cardiff University's School of Physics and Astronomy fired light particles, or photons, into a tiny tower of semi-conducting material. A photon collides with an electron confined in an even smaller structure within the tower, and they oscillate briefly between the states of light and matter, before the photon re-emerges.

Related Articles


The Cardiff team have conducted this experiment with both individual and pairs of photons. They showed that photon pairs increase the frequency of the oscillation between light and matter over individual photons. Their findings agree with theoretical predictions first made in the 1960s.

The findings have long-term implications for information and communications technology. It may one day be possible to build logical systems based on the interactions of these particles -- also known as quantum computing. As the particles move faster and use less energy than conventional electronic computer components, this would lead to more efficient processing.

However, the technical problems involved are still extremely difficult. The Cardiff team used a semiconductor tube of 1.8 micrometers in diameter (a micrometer is a thousandth of a millimetre). It was kept at a temperature of around -263ºC (ten degrees above absolute zero) and the photons were trapped inside a semiconductor tube only for around 10 picoseconds (a picosecond is one trillionth of a second).

Professor Wolfgang Langbein, who led the team with Dr Jacek Kasprzak, now at Néel Institute, CNRS Grenoble, said: "This interaction can produce a steady stream of photons, and can also be the basis for single photon logic -- which requires the minimum amount of energy to do logic. In the long term, there are implications in a number of areas, including computing, telecommunications and cryptography devices.

"To use this technology in real computing devices will take a significant improvement of the low-temperature properties and ideally its translation to room temperature. At the moment we have no clear concept how to do this -- but it is not impossible."

The group's findings have just been published in Nature Materials. The world-class semiconducting structures used in the experiments were developed at the University of Würzburg in Germany.


Story Source:

The above story is based on materials provided by Cardiff University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kasprzak et al. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system. Nature Materials, 2010; 9 (4): 304 DOI: 10.1038/nmat2717

Cite This Page:

Cardiff University. "Quantum computing closer: Properties of hybrid light-matter particles discovered." ScienceDaily. ScienceDaily, 20 April 2010. <www.sciencedaily.com/releases/2010/04/100419102918.htm>.
Cardiff University. (2010, April 20). Quantum computing closer: Properties of hybrid light-matter particles discovered. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2010/04/100419102918.htm
Cardiff University. "Quantum computing closer: Properties of hybrid light-matter particles discovered." ScienceDaily. www.sciencedaily.com/releases/2010/04/100419102918.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) — Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) — Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360° Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360° Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) — Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) — Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins