Featured Research

from universities, journals, and other organizations

Stress-response system in the ear protects against hearing loss

Date:
May 3, 2010
Source:
Tufts University, Health Sciences
Summary:
An in vivo study shows for the first time that there is a local stress-response system within the cochlea that mirrors the signaling pathways of the body's fight or flight response. This hormone-like signaling system of the inner ear sets baseline hearing sensitivity and helps protect against noise-induced hearing loss.

An in vivo study shows for the first time that there is a stress-response system within the cochlea that mirrors the signaling pathways of the body's fight or flight response. Researchers have identified a hormone-like signaling system of the inner ear that sets baseline hearing sensitivity and helps protect against noise-induced hearing loss.

"Our research shows, for the first time, that the cochlea's protective mechanism is likely to be largely a locally-produced phenomenon. The current theory of protection is that signals from the cochlea travel to the brain and back. While this theory does work under certain circumstances, we have known that it requires moderately-high intensity sounds to function. Our study demonstrates that a previously unrecognized signaling system involved in noise-induced hearing loss exists entirely within the ear. This signaling system works at lower intensity sounds -- typical of our everyday environment -- than the pathway involving the brain," explained Doug Vetter, PhD, senior author and lecturer in the department of neuroscience at Tufts University School of Medicine.

"The local signaling system that we identified in the cochlea mirrors the molecular signaling pathways of the body's physiological fight-or-flight response, which is triggered by the release of molecules from the adrenal glands during times of physical stress. It may be that activation of the cochlea's protective mechanism from physical stress changes the way the cells of the inner ear respond to the next exposure. In this way, protection may be established based on previous exposures, and prior to the next exposure to potentially damaging sounds," continued Vetter.

As many as 26 million Americans, or 15 percent of the adult population, suffer from hearing loss, some of which may have been caused by exposure to loud noise, according to an estimate by the National Institute on Deafness and Other Communication Disorders (NIDCD) at the National Institutes of Health. Noise-induced hearing loss is one of the most common occupational injuries in the United States, and is most prevalent in the general manufacturing, mining, and construction industries. Daily exposure to noise, including listening to music too loudly, can also result in permanent hearing damage. In order to prevent noise-induced hearing loss, NIDCD suggests that "a good rule of thumb is to avoid noises that are 'too loud,' and 'too close' or that last 'too long.'"

Vetter and colleagues focused on a specific receptor for corticotropin-releasing factor (CRF), a peptide that acts as a hormone and neurotransmitter. In the typical hormone signaling system served by CRF, the hypothalamus secretes CRF in response to stress and triggers the release of glucocorticoids, which are involved in the body's immune and inflammatory responses.

Mice that were missing a gene responsible for making CRFR2, a specific CRF receptor, had increased sensitivity to sound. While this may seem to be an advantage, when exposed to an environment of broad frequency sounds similar in intensity to normal conversation, Vetter and colleagues found that the mice with a genetic deficit of CRFR2 receptors experienced significant hearing damage, while normal mice experienced no hearing loss at all. In another experiment, mice were exposed to high intensity sound levels, comparable to that of a passing subway train at about ten feet, or most MP3 players at maximum volume. As expected, under these conditions, the mice with the normal CRFR2 genes experienced some hearing loss, but the mice lacking the CRFR2 genes experienced twice as much hearing loss compared to the normal mice.

"Our research shows that the CRFR2 receptors have a role in the cellular reaction to environmental stressors acting on the inner ear, such as moderate and loud noise exposure. Identifying the role of CRF receptors in the inner ear may ultimately help us understand why some individuals are more susceptible than others to noise-induced hearing loss. It is possible that there is some variability in the activity or expression of the receptors," said first author Christine Graham, a graduate student in neuroscience at the Sackler School of Graduate Biomedical Sciences at Tufts.

Johnvesly Basappa, PhD, a postdoctoral associate in the department of neuroscience at Tufts University School of Medicine and a member of the Vetter laboratory was a co-author on the study.

The study was published in the May issue of Neurobiology of Disease.

This research was supported by the National Institute on Deafness and Other Communication Disorders, part of the National Institutes of Health; and by the Tufts Center for Neuroscience Research. The Tufts Center for Neuroscience Research is supported by the National Institute of Neurological Disorders and Stroke, also part of the National Institutes of Health; and by Tufts University School of Medicine and Tufts Medical Center.


Story Source:

The above story is based on materials provided by Tufts University, Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christine E. Graham, Johnvesly Basappa, Douglas E. Vetter. A corticotropin-releasing factor system expressed in the cochlea modulates hearing sensitivity and protects against noise-induced hearing loss. Neurobiology of Disease, 2010; 38 (2): 246 DOI: 10.1016/j.nbd.2010.01.014

Cite This Page:

Tufts University, Health Sciences. "Stress-response system in the ear protects against hearing loss." ScienceDaily. ScienceDaily, 3 May 2010. <www.sciencedaily.com/releases/2010/05/100503111525.htm>.
Tufts University, Health Sciences. (2010, May 3). Stress-response system in the ear protects against hearing loss. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2010/05/100503111525.htm
Tufts University, Health Sciences. "Stress-response system in the ear protects against hearing loss." ScienceDaily. www.sciencedaily.com/releases/2010/05/100503111525.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins