Featured Research

from universities, journals, and other organizations

Instantaneous velocity in Brownian particles observed, a century after Einstein said it would be impossible

Date:
May 20, 2010
Source:
University of Texas at Austin
Summary:
A century after Albert Einstein said we would never be able to observe the instantaneous velocity of tiny particles as they randomly shake and shimmy (in so-called Brownian motion), physicist Mark Raizen and his group have done so.

A 5-micrometer glass bead levitated in air by a single laser beam from below. This optical trap is formed by the force from the laser beam and the gravitational force on the bead. Tongcang Li, et. al. used a similar optical trap to study the Brownian motion of a trapped bead in air with ultra-high resolution. Their paper is published in Science.
Credit: Tongcang Li

A century after Albert Einstein said we would never be able to observe the instantaneous velocity of tiny particles as they randomly shake and shimmy (in so-called Brownian motion), physicist Mark Raizen and his group have done so.

"This is the first observation of the instantaneous velocity of a Brownian particle," says Raizen, the Sid W. Richardson Foundation Regents Chair and professor of physics at The University of Texas at Austin. "It's a prediction of Einstein's that has been standing untested for 100 years. He proposed a test to observe the velocity in 1907, but said that the experiment could not be done."

In 1907, Einstein likely did not foresee a time when dust-sized particles of glass could be trapped and suspended in air by dual laser beam "optical tweezers." Nor would he have known that ultrasonic vibrations from a plate-like transducer would shake those glass beads into the air to be tweezed and measured as they moved in suspension.

Raizen's research, published in Science, is the first direct test of the equipartition theorem for Brownian particles, one of the basic tenets of statistical mechanics. It is also a step toward cooling glass beads to a state in which they could be used as oscillators or sensors.

The equipartition theorem states that a particles' kinetic energy -- the energy it possesses due to motion -- is determined only by its temperature, not its size or mass.

Raizen's study now proves that the equipartition theorem is true for Brownian particles; in this case, glass beads that were three micrometers across.

Raizen says he and his colleagues can now push the limits, moving the particles closer to a quantum state for observation.

"We've now observed the instantaneous velocity of a Brownian particle," says Raizen. "In some sense, we're closing a door on this problem in physics. But we are actually opening a much larger door for future tests of the equipartition theorem at the quantum level."

There, he expects that equipartition theory will break down, leading to new problems and solutions surrounding the quantum mechanics of small particles composed of many atoms.

Raizen's coauthors are Tongcang Li, Simon Kheifets and David Medellin of the Center for Nonlinear Dynamics and Department of Physics at The University of Texas at Austin.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tongcang Li, Simon Kheifets, David Medellin, and Mark G. Raizen. Measurement of the Instantaneous Velocity of a Brownian Particle. Science, 2010; DOI: 10.1126/science.1189403

Cite This Page:

University of Texas at Austin. "Instantaneous velocity in Brownian particles observed, a century after Einstein said it would be impossible." ScienceDaily. ScienceDaily, 20 May 2010. <www.sciencedaily.com/releases/2010/05/100520141206.htm>.
University of Texas at Austin. (2010, May 20). Instantaneous velocity in Brownian particles observed, a century after Einstein said it would be impossible. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/05/100520141206.htm
University of Texas at Austin. "Instantaneous velocity in Brownian particles observed, a century after Einstein said it would be impossible." ScienceDaily. www.sciencedaily.com/releases/2010/05/100520141206.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins