Featured Research

from universities, journals, and other organizations

'Printing' pills to order: Research to create safer, faster-acting medicines

Date:
May 24, 2010
Source:
University of Leeds
Summary:
A collaboration in the UK is looking at 'printing' pills to order, to create safer and faster-acting medicines. The research is set to revolutionize a process which has remained unchanged for over a thousand years.

A collaboration between the University of Leeds, Durham University and GlaxoSmithKline (GSK) is looking at 'printing' pills to order, to create safer and faster-acting medicines.

Related Articles


It should also bring new drugs to market faster, so patients can benefit more quickly from medical advances.

The research, led by Dr Nik Kapur from the University's Faculty of Engineering, is set to revolutionise a process which has remained unchanged for over a thousand years.

GSK has developed a way of printing active pharmaceutical ingredients onto tablets -- but the process can only currently be applied to just 0.5 per cent of all medicines used in tablet form. The researchers hope the new project will see this increase this to 40 per cent.

"Some active ingredients can be dissolved in a liquid, which then behaves like normal ink, so then the process is fairly straightforward," explains Dr Kapur. "However, when you're working with active ingredients that don't dissolve, the particles of the drug are suspended in the liquid, which creates very different properties and challenges for use within a printing system.

"For some tablets, you may also need higher concentrations of active ingredients to create the right dose, and this will affect how the liquid behaves."

A medicine droplet is 20 times larger than an ink droplet in a standard ink-jet system, so the challenges facing the researchers include the numbers of drops that each tablet can hold, and how to increase the level of active ingredient in each drop. The research will also look at the properties and behaviour of the suspension, the shape and size of the printing nozzle and ways to pump the suspension through the printing equipment.

Drugs produced in this way would be faster acting, as with the active ingredient on the pill's surface, the pill would no longer need to be broken down by the digestive system before the drug can enter the bloodstream. Ultimately it would also be possible to print several drugs onto one pill, reducing the number of tablets to be swallowed by patients on multiple medicines.

Printing active ingredients onto pre-formed tablets speeds up and improves quality control, as each tablet contains exactly the correct dose. With some of the current quality assurance procedures rendered unnecessary, new drugs would reach patients much faster.

The first documented manufacture of pills goes back to Egyptian times, when active medicinal ingredients were rolled in bread or clay, but the earliest reference to a tablet -- a compressed pill -- is found in tenth century Arabic medical literature. The process had little changed when the first patent for tablets was applied for in 1843. First produced in small doses by pharmacists, mass production still uses the same process, but with much advanced technology and quality assurance.

Because most drugs only need very small doses, the pill or tablet acts as a carrier to make the medicine big enough to pick up and swallow. The active ingredient is usually just one thousandth of a pill, so has to be mixed with other ingredients to bulk it out to pill size. This is then split into the amount needed for each pill and compressed to create a tablet.

One of the major challenges is ensuring that each tablet contains the correct dose. This is currently done by statistically checking samples from each batch of pills post-production, but a printed system would enable quality control of each pill as it is produced. The new system would therefore both speed up production and provide a greater quality assurance and consistency of dosage than are currently possible under even the highest pharmaceutical standards.

The research is jointly funded by GSK and the Technology Strategy Board and will run for two years. Working with Dr Kapur on the project are colleagues from Leeds' Schools of Mechanical Engineering, Maths and Chemistry and from the Durham University's Department of Chemistry.


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Cite This Page:

University of Leeds. "'Printing' pills to order: Research to create safer, faster-acting medicines." ScienceDaily. ScienceDaily, 24 May 2010. <www.sciencedaily.com/releases/2010/05/100524073001.htm>.
University of Leeds. (2010, May 24). 'Printing' pills to order: Research to create safer, faster-acting medicines. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2010/05/100524073001.htm
University of Leeds. "'Printing' pills to order: Research to create safer, faster-acting medicines." ScienceDaily. www.sciencedaily.com/releases/2010/05/100524073001.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins