Featured Research

from universities, journals, and other organizations

Stem-cell disruption induces skull deformity, study shows

Date:
May 26, 2010
Source:
University of Rochester Medical Center
Summary:
Scientists have discovered a defect in cellular pathways that provides a new explanation for the earliest stages of abnormal skull development in newborns, known as craniosynostosis.

Abnormal head shape due to craniosynostosis affects about one in 2,500 individuals. It can restrict normal brain growth and result in neurodevelopment delays and elevated intracranial pressure.
Credit: Image courtesy of University of Rochester Medical Center

University of Rochester Medical Center scientists discovered a defect in cellular pathways that provides a new explanation for the earliest stages of abnormal skull development in newborns, known as craniosynostosis.

Mutations of the WNT and FGF signaling pathways set off a cascade of events that regulate bone formation at the stem cell level, according to the article, published May 25, 2010, in the journal Science Signaling.

"Our work contributes to the overall knowledge of the complex system that controls the stem cell fate," said lead author Wei Hsu, Ph.D., associate professor of Biomedical Genetics and Oncology, and an investigator in the URMC Center for Oral Biology. "More specifically, we found that when a certain type of stem cell goes awry, it leads to a new mechanism for craniosynostosis."

Abnormal head shape due to craniosynostosis affects about one in 2,500 individuals. It can restrict normal brain growth and result in neurodevelopment delays and elevated intracranial pressure. The chief cause, which is already known, is a defect in osteoblasts, the type of cells most important for the making of bone.

But until now scientists did not know about a second mechanism for craniosynostosis, a result of a disruption among the earliest forms of cells. Hsu's lab made the discovery in a study in mice, which have the same skull structure as humans.

Eight bones make up the cranium. Initially these individual plates of skull bone are separated by gaps called sutures. In humans the bone plates gradually fuse together, starting at birth and ending in people's 30s.

Two key events takes place during the first 18 months of life that are critical to the proper formation of bone. The first, called intramembranous ossification, is responsible for final development of the skull bones, jaw-bones and collarbones. The other process, called endochondral ossification, controls development of the long bones in the body.

During intramembranous ossification a type of stem cell -- the mesenchymal cell -- must transform into bone-forming osteoblast cells, which deposit the bone matrix. The majority of bone is made after the matrix hardens and entraps the osteoblasts.

Hsu's group discovered that the WNT and FGF signaling pathways determine the fate of the mesenchymal stem cells. And, when these pathways are altered, the mesenchymal cells change to chondrocytes and end up inducing endochondral ossification instead of intramembranous ossification. As a result of this switch, the skull sutures close prematurely.

While endochrondal ossification is essential to the development of cartilage and long bones, it has not been shown to play a role in normal skull development. Hsu's research, therefore, implies that endochondral ossification is a culprit for skull deformities.

"There have been some reports of peculiar chondrocytes present in prematurely closed sutures," Hsu said, "and based on our research it is reasonable to believe they might be there for a reason."

Alterations of the mesenchymal stem cells also have been associated with osteoarthritis, osteoporosis and osteoponia, and mutations in either the WNT or FGF pathways are often detected in skeletal disorders and cancer. Thus, additional research might shed light on the complex properties of stem cells, and how they are transformed during the disease process, Hsu said.

The National Institutes of Health funded the research. Co-authors are Takamitsu Maruyama and Anthony J. Mirando from the URMC Department of Biomedical Genetics and Center for Oral Biology; and Chu-Xia Deng, of the NIH Genetics of Development and Disease Branch.


Story Source:

The above story is based on materials provided by University of Rochester Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester Medical Center. "Stem-cell disruption induces skull deformity, study shows." ScienceDaily. ScienceDaily, 26 May 2010. <www.sciencedaily.com/releases/2010/05/100525111938.htm>.
University of Rochester Medical Center. (2010, May 26). Stem-cell disruption induces skull deformity, study shows. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/05/100525111938.htm
University of Rochester Medical Center. "Stem-cell disruption induces skull deformity, study shows." ScienceDaily. www.sciencedaily.com/releases/2010/05/100525111938.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins