Featured Research

from universities, journals, and other organizations

Electron ‘spin’ in silicon will lead to revolutionary quantum chips

Date:
May 27, 2010
Source:
University of Southampton
Summary:
A silicon-based nanoscale system which aims to harness the 'spin' of electrons to boost the processing power of future computer systems is being developed.

A silicon-based nanoscale system which aims to harness the 'spin' of electrons to boost the processing power of future computer systems is being developed by researchers at the University of Southampton, jointly with the University of Cambridge, the NTT Basic Research Laboratories and the Hitachi Cambridge Laboratory.

The three-year project, which has just received funding of 1M from the Engineering and Physical Sciences Research Council (EPSRC) aims to build the world's first silicon-based integrated single-spin quantum bit system.

According to Professor Hiroshi Mizuta, Head of the Nano Research Group at the University's School of Electronics and Computer Science (ECS), the new system will enable researchers working with silicon to initialise, manipulate and read single-electron's 'spin' states rather than just charge states. In the past, it has been possible to capture just electronic charge. The advantage of employing spin rather than charge is that spin can maintain coherence and is hardly destroyed by interference in silicon or graphene.

The approach will also enable the development of novel nanospintronic devices -- nanoscale circuits that could use the spin of the individual electrons to transmit, store and process information. In principle, such devices could dramatically enhance scaling of functional density and performance while simultaneously reducing the energy dissipated per functional operation. As well as boosting the processing power of conventional computers, this could also be used in quantum computers.

"This project is a paradigm shift in information and communication technology (ICT)," said Professor Mizuta. "It is not just an extension of existing silicon technology; we have introduced a completely new principle based on quantum mechanics, which will make it possible for industry to continue to use silicon as devices get smaller."

The research team, which consists of the ECS Nano Research Group, the University of Cambridge, Hitachi Cambridge Laboratory and NTT Basic Research Laboratories, will develop an integrated single-spin information processing technology, which will provide a unique solution to massively-parallel and highly-secure information processing technology in the beyond CMOS (Complementary Metal-Oxide-Semiconductor) era.


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "Electron ‘spin’ in silicon will lead to revolutionary quantum chips." ScienceDaily. ScienceDaily, 27 May 2010. <www.sciencedaily.com/releases/2010/05/100526093612.htm>.
University of Southampton. (2010, May 27). Electron ‘spin’ in silicon will lead to revolutionary quantum chips. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2010/05/100526093612.htm
University of Southampton. "Electron ‘spin’ in silicon will lead to revolutionary quantum chips." ScienceDaily. www.sciencedaily.com/releases/2010/05/100526093612.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins