Featured Research

from universities, journals, and other organizations

Immune cell's role in lupus nephritis: Discovery paves way for safety testing of potential new use for asthma drug

Date:
June 2, 2010
Source:
NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases
Summary:
Scientists have discovered that the activation of immune cells called basophils causes kidney damage in a mouse model of lupus nephritis. These findings and the team's associated research in humans may lead to new treatments for this serious disease, a severe form of systemic lupus erythematosus that affects the kidneys and is difficult to treat.

National Institutes of Health scientists have discovered that the activation of immune cells called basophils causes kidney damage in a mouse model of lupus nephritis. These findings and the team's associated research in humans may lead to new treatments for this serious disease, a severe form of systemic lupus erythematosus (SLE) that affects the kidneys and is difficult to treat.

In earlier research, the team found that mice engineered to be deficient in a protein called Lyn kinase had exaggerated responses to allergens in early life and developed a lupus-nephritis-like disease in later life. This was determined by monitoring the increase of immunoglobulin E (IgE) responses to normally harmless substances. The new study, published online in Nature Medicine, demonstrates for the first time, in the context of this mouse model, how basophils activated by self-reactive IgE antibodies (antibodies that attack the self instead of germs) might contribute to the kidney damage associated with SLE.

Specifically, the team showed that self-reactive IgEs attached to the surface of basophils, causing them to home to the mouse's spleen and lymph nodes, where they promoted a cascade of cellular events that enhanced the production of more self-reactive antibodies. These antibodies are already known to cause kidney damage by binding with other proteins to form immune complexes that are deposited in the kidneys. Here, they caused inflammation, damage and progressive loss of kidney function.

Furthermore, the scientists demonstrated that inducing the absence of self-reactive IgEs or depleting the population of basophils relieved many of the kidney disease features seen in the mouse model.

To explore the implications of their results in humans, the scientists examined blood samples from 44 people with SLE and found the presence of self-reactive IgEs, as well as an increase in activated basophils, features not seen in healthy controls. Both factors were strongly associated with disease activity and lupus nephritis in the people with SLE, suggesting a potential therapeutic benefit in reducing the levels of self-reactive IgE or of activated basophils.

One such potential treatment, the asthma medicine omalizumab, is already on the market. It blocks IgE from binding to the surface, and potential activation, of basophil cells, which might prevent basophils from promoting kidney inflammation. The NIH team is currently planning a safety study of omalizumab in people with SLE.

"We are excited by the potential of these findings in the treatment of lupus. Obviously, whether omalizumab treatment or other strategies to reduce basophil activation in lupus will prove efficacious remains to be seen. Nonetheless, this work opens new avenues of investigation in lupus and, at the very least, we have gained an understanding of how autoantibody production is enhanced in this disease," said Juan Rivera, Ph.D., the study's senior author and deputy scientific director at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the NIH institute that conducted the study. Support for the effort was also provided by the National Institute of Dental and Craniofacial Research.

In addition to testing omalizumab's potential and safety for treating lupus nephritis, Rivera says the group's future research will explore other ways that IgEs can be prevented from binding with basophils. They will also attempt to determine whether or not depleting or inactivating the basophil population might reduce the production of self-reactive antibodies that can lead to kidney damage in SLE.


Story Source:

The above story is based on materials provided by NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicolas Charles, Donna Hardwick, Eric Daugas, Gabor G Illei, Juan Rivera. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nature Medicine, 2010; DOI: 10.1038/nm.2159

Cite This Page:

NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. "Immune cell's role in lupus nephritis: Discovery paves way for safety testing of potential new use for asthma drug." ScienceDaily. ScienceDaily, 2 June 2010. <www.sciencedaily.com/releases/2010/06/100601091336.htm>.
NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. (2010, June 2). Immune cell's role in lupus nephritis: Discovery paves way for safety testing of potential new use for asthma drug. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/06/100601091336.htm
NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. "Immune cell's role in lupus nephritis: Discovery paves way for safety testing of potential new use for asthma drug." ScienceDaily. www.sciencedaily.com/releases/2010/06/100601091336.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins