Featured Research

from universities, journals, and other organizations

Blocking DNA repair protein could lead to targeted, safer cancer therapy

Date:
June 7, 2010
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
Inhibiting a key molecule in a DNA repair pathway could provide the means to make cancer cells more sensitive to radiation therapy while protecting healthy cells, according to new research. The findings provide new insights into mechanisms of how the body fixes environmentally induced DNA damage and into the deadly neurological disease ataxia-telangiectasia.

Researchers at the University of Pittsburgh Cancer Institute (UPCI) and the School of Medicine have discovered that inhibiting a key molecule in a DNA repair pathway could provide the means to make cancer cells more sensitive to radiation therapy while protecting healthy cells.

Related Articles


The findings are published in Science Signaling and provide new insights into mechanisms of how the body fixes environmentally induced DNA damage and into the deadly neurological disease ataxia-telangiectasia (A-T), said senior author Christopher Bakkenist, Ph.D., assistant professor of radiation oncology, pharmacology and chemical biology at UPCI and the School of Medicine.

"A characteristic symptom of A-T is heightened sensitivity to ionizing radiation, such as X-rays and gamma rays," he said. "If we understand why that happens, then we might be able to reproduce it to make tumor cells vulnerable to radiation treatments while sparing healthy cells, which would make therapy more effective while minimizing side effects."

In A-T, brain areas that control movement progressively degenerate, causing walking and balance problems. Patients carry a gene mutation that stops production of a protein called ATM kinase, which spurs other proteins involved in normal cell division, DNA repair and cell death.

Radiation causes DNA mutations during the process of cell division, when genetic material is copied for a new cell to form. The cell has repair pathways that include checkpoints to look for errors as well as methods to repair them, but if enough mutations accumulate, the cell could become cancerous or self-destruct. A-T patients, who lack the kinase, have a higher risk for developing cancer, Dr. Bakkenist said.

He and his colleagues tested what would happen if they blocked the activity of ATM kinase in cells that make the protein. They had already determined that administering an ATM kinase inhibitor from 15 minutes to 75 minutes after radiation exposure was sufficient to make normal cells more sensitive to the effects of radiation.

To their surprise, they found that inactivation of ATM kinase prevented a type of DNA repair that is essential for proper duplication of genetic material during replication. However, A-T cells did not have this problem despite lacking the kinase; they presumably use another method to check for and correct those errors.

The discovery revealed a new approach to target cancer.

"A characteristic of tumor cells is that they rapidly replicate, possibly because they have mutations that encourage cell division or that thwart repair pathways," Dr. Bakkenist explained. "But ATM kinase remains present in the vast majority of human cancers, so that suggests it is needed by those diseased cells during replication."

Cells that, unlike cancer cells, are not going through what's known as replication stress, would not be affected by an ATM inhibitor and, like A-T cells, likely have another way of repairing certain radiation-induced mutations, he said.

"So that would make cancer cells particularly vulnerable to an ATM inhibitor, while healthy cells should be unaffected," Dr. Bakkenist said.

He and his team are now studying the effects of such inhibitors on pancreatic, lung and breast cancer cells.

Co-authors of the paper are Jason S. White, Ph.D., and Serah Choi, both of the Pitt School of Medicine.

The work was supported by a National Cancer Institute Lung Cancer SPORE grant; the Lung Cancer Research Foundation; the Breast Cancer Research Foundation; and the Frieda G. and Saul F. Shapira BRCA Cancer Research Program.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "Blocking DNA repair protein could lead to targeted, safer cancer therapy." ScienceDaily. ScienceDaily, 7 June 2010. <www.sciencedaily.com/releases/2010/06/100601151108.htm>.
University of Pittsburgh Schools of the Health Sciences. (2010, June 7). Blocking DNA repair protein could lead to targeted, safer cancer therapy. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/06/100601151108.htm
University of Pittsburgh Schools of the Health Sciences. "Blocking DNA repair protein could lead to targeted, safer cancer therapy." ScienceDaily. www.sciencedaily.com/releases/2010/06/100601151108.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins