Featured Research

from universities, journals, and other organizations

Scientists create artificial mini 'black hole'

Date:
June 3, 2010
Source:
Institute of Physics
Summary:
Chinese researchers have successfully built an electromagnetic absorbing device for microwave frequencies. The device, made of a thin cylinder comprising 60 concentric rings of metamaterials, is capable of absorbing microwave radiation, and has been compared to an astrophysical black hole (which, in space, soaks up matter and light).

Omnidirectional electromagnetic absorber.
Credit: Image courtesy of Institute of Physics

Chinese researchers have successfully built an electromagnetic absorbing device for microwave frequencies. The device, made of a thin cylinder comprising 60 concentric rings of metamaterials, is capable of absorbing microwave radiation, and has been compared to an astrophysical black hole (which, in space, soaks up matter and light).

Related Articles


The research published June 3 in New Journal of Physics, shows how the researchers utilised the special properties of metamaterials, a class of ordered composites which can distort light and other waves.

Qiang Cheng and Tie Jun Cui of the State Key Laboratory of Millimeter Waves at Southeast University in Nanjing, China, designed and fabricated their absorbing device, officially called an "omnidirectional electromagnetic absorber," using 60 strips of circuit board arranged in concentric layers coated in copper. Each layer is imprinted with alternating patterns, which resonate or don't resonate in electromagnetic waves.

The designed device can trap and absorb electromagnetic waves coming from all directions by spiraling the radiation inwards and converting its energy into heat with an absorption rate of 99%. Hence it behaves like an "electromagnetic black body" or an "electromagnetic black hole."

At the moment, the device only works with microwaves, but the researchers are planning to develop a black hole for visible light next.

The current results could find some applications in microwaves. As the researchers write, "The good agreement between theoretical and experimental results has shown the excellent ability for metamaterials as the candidate to construct artificial omnidirectional absorbing devices.

"Since the lossy core can transfer electromagnetic energies into heat energies, we expect that the proposed device could find important applications in thermal emitting and electromagnetic-wave harvesting."


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qiang Cheng, Tie Jun Cui, Wei Xiang Jiang and Ben Geng Cai. An omnidirectional electromagnetic absorber made of metamaterials. New Journal of Physics, 2010; DOI: 10.1088/1367-2630/12/6/063006

Cite This Page:

Institute of Physics. "Scientists create artificial mini 'black hole'." ScienceDaily. ScienceDaily, 3 June 2010. <www.sciencedaily.com/releases/2010/06/100603091829.htm>.
Institute of Physics. (2010, June 3). Scientists create artificial mini 'black hole'. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2010/06/100603091829.htm
Institute of Physics. "Scientists create artificial mini 'black hole'." ScienceDaily. www.sciencedaily.com/releases/2010/06/100603091829.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com
'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) — A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Amplifying Tiny Movements to Visualize the Invisible

Amplifying Tiny Movements to Visualize the Invisible

Reuters - Innovations Video Online (Jan. 28, 2015) — A new video recording method that amplifies seemingly invisible motion could lead to a touch-free vital signs monitor, and offer a new tool for engineers to gauge stresses on bridges and tunnels in real time. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Boeing's Profit Soars

Boeing's Profit Soars

Reuters - Business Video Online (Jan. 28, 2015) — Boeing delivered more commercial planes, especially 737s and 787s, fueling profit. But it issued a mixed outlook. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins