Featured Research

from universities, journals, and other organizations

Testing predictions in electrochemical nanosystems

Date:
June 7, 2010
Source:
Technische Universitaet Muenchen
Summary:
Physicists in Germany are gearing up for experimental tests of findings they arrived at through theoretical considerations: that electrochemical reactions take place more rapidly on isolated, nanometer-scale electrodes than on their familiar macroscopic counterparts, and that this surprising behavior is caused by thermal noise. They say their method accounts for effects that macroscopic models can't explain and is general enough to address a variety of research questions beyond those concerning nanoelectrodes.

Physicists at the Technische Universitaet Muenchen (TUM) are gearing up for experimental tests of findings they arrived at through theoretical considerations: that electrochemical reactions take place more rapidly on isolated, nanometer-scale electrodes than on their familiar macroscopic counterparts, and that this surprising behavior is caused by thermal noise.

Related Articles


Prof. Katharina Krischer and Dr. Vladimir Garcia-Morales published their results earlier this year in the Proceedings of the National Academy of Sciences (PNAS). The project is supported by the TUM Institute for Advanced Study, which emphasizes scientifically "risky" research that may have potential for creating new fields of technology.

Familiar processes take unfamiliar turns when they're observed on the nanoscale, where models that accurately describe macroscopic phenomena may not be reliable, or even applicable. Electrochemical reactions, for example, which normally appear to proceed smoothly, seem to halt and stumble in the nanoworld. When the electrodes involved are less than ten nanometers wide, chance plays a bigger role: Random movement of molecules makes the exact timing of reactions unpredictable.

Now, however, just such a process can be described by a theoretical model developed by the TUM physicists. They demonstrated their method in a study of nanoscale reactions, published in PNAS, which presented a new electrochemical "master equation" underlying the model. Their results show that thermal noise -- that is, the randomness of molecular movement and individual electron-transfer reactions -- actually plays a constructive role in a nanoscale electrochemical system, enhancing reaction rates.

"The effect predicted is robust," says Dr. Vladimir Garcia-Morales, recently named a Carl von Linde Junior Fellow of the TUM Institute for Advanced Study, "and it should show up in many experimental situations." To see for themselves, the researchers have turned their attention from the chalkboard and the computer to the lab bench. Their experiments present several technical challenges. One is not only to fabricate disk-shaped electrodes with a radius of just three to ten nanometers, but also to determine the electrode area accurately. Another tough requirement is setting up the electronics to minimize noise from external sources, to make sure the influence of internal, molecular noise can be observed.

"An important aspect," Dr. Garcia-Morales says, "is that the reported effect can change our view on the collective properties of many electrodes. Common intuition suggests that if one makes the electrode area ten times as large, the current would be ten times as high. But, as we show with our theory, the proportionality does not hold any more when the electrode dimension becomes as small as a few nanometers."

Experimental validation could also help to transpose the TUM researchers' theory to a variety of situations. They say their method accounts for effects that macroscopic models can't explain and could prove useful in addressing a variety of research questions. "The applicability of the electrochemical master equation is in fact beyond the specific problem addressed in the publication," Prof. Katharina Krischer stresses. "It establishes a general framework for stochastic processes involving electron-transfer reactions. For example, we now use it to predict the quality of electrochemical clocks at the nanoscale."

Support for this research has come from the European Union (Project DYNAMO), the Nanosystem Initiative Muenchen Cluster of Excellence, and the TUM Institute for Advanced Study.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. Garcia-Morales, K. Krischer. Fluctuation enhanced electrochemical reaction rates at the nanoscale. Proceedings of the National Academy of Sciences, 2010; 107 (10): 4528 DOI: 10.1073/pnas.0909240107

Cite This Page:

Technische Universitaet Muenchen. "Testing predictions in electrochemical nanosystems." ScienceDaily. ScienceDaily, 7 June 2010. <www.sciencedaily.com/releases/2010/06/100607065706.htm>.
Technische Universitaet Muenchen. (2010, June 7). Testing predictions in electrochemical nanosystems. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2010/06/100607065706.htm
Technische Universitaet Muenchen. "Testing predictions in electrochemical nanosystems." ScienceDaily. www.sciencedaily.com/releases/2010/06/100607065706.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins