Featured Research

from universities, journals, and other organizations

New 'microbead' radiotherapy more effective with molecular imaging

Date:
June 7, 2010
Source:
Society of Nuclear Medicine
Summary:
Research may change the way that a novel form of radiotherapy is set up and tested prior to treatment. This technique, known as radiomicrosphere therapy, involves the injection of tiny highly radioactive beads that "nestle up" with cancerous tumors and destroy them with precision.

Research unveiled at the Society of Nuclear Medicine's 57th Annual Meeting may change the way that a novel form of radiotherapy is set up and tested prior to treatment. This technique, known as radiomicrosphere therapy, involves the injection of tiny highly radioactive beads that "nestle up" with cancerous tumors and destroy them with precision. However, technologists and physicians must work together to carefully plan each patient's treatment using molecular imaging to ensure that the beads do not wander off into other areas of the body.

"Radiomicrosphere therapy guided by molecular imaging is an emerging area of radiotherapy and has the potential to target treatments for cancer patients," said Ron Young, C.N.M.T., principal researcher and clinical manager of nuclear medicine at the Cleveland Clinic, Cleveland, Ohio. "This technique allows us to provide the most effective and individualized therapy with minimal complications for the patient."

Radiomicrosphere therapy can lead to unwanted damage to healthy tissues. Young emphasizes that those providing care must perform an imaging scan of patients to predict where these particles are going to travel and potentially destroy normal tissue. A form of molecular imaging called SPECT/CT, which combines single photon emission computed tomography and X-ray computed tomography, may be the best tool for determining the likely path of these cancer-killing microbeads. With this form of radiotherapy, also called radioembolization, tiny beads are impregnated with a radioisotope and injected into the liver with a catheter inserted through the groin. Prior to therapy, technologists and nuclear medicine physicians simulate therapy by injecting patients with the imaging agent Tc99m-MAA, which emulates the migration pattern the spheres will take. Molecular and X-ray imaging with SPECT/CT technology provide the essential information interventional radiologists need to then block blood vessels surrounding the targeted organ with small metal coils, effectively isolating the microbeads during therapy.

In this study, 99 patients underwent conventional planar imaging with gamma camera technology followed by imaging with SPECT/CT prior to therapy. Only nine patients out of the 99 showed potential for "shunting" or bleeding of the radioactive particles into other areas of the body, leading to the destruction of healthy tissues. The use of SPECT/CT alone indicated that 23 patients, more than double that of more conventional imaging, showed potential for complications. Another patient's hepatic vein, the main blood vessel into the liver, was shown to be obstructed by the tumor, which informed the treating physician that therapy would need to be altered due to this obstruction. In this case, SPECT/CT was able to uncover a previously unknown complication that changed the course of treatment for the patient. According to the study, SPECT/CT makes radiomicrosphere therapy a more powerful and safer tool for cancer therapy.

Scientific Paper 2023: R.Young, S. Shrikanthan, Nuclear Medicine, Cleveland Clinic, Cleveland, Ohio; A. Levitin, G. Cheah, Interventional Radiography, Cleveland Clinic, Cleveland, Ohio; "Detection of Extra Hepatic Shunting in Radiomicrosphere Therapy," SNM's 57th Annual Meeting, June 5-9, 2010, Salt Lake City, Utah.


Story Source:

The above story is based on materials provided by Society of Nuclear Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Society of Nuclear Medicine. "New 'microbead' radiotherapy more effective with molecular imaging." ScienceDaily. ScienceDaily, 7 June 2010. <www.sciencedaily.com/releases/2010/06/100607142109.htm>.
Society of Nuclear Medicine. (2010, June 7). New 'microbead' radiotherapy more effective with molecular imaging. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2010/06/100607142109.htm
Society of Nuclear Medicine. "New 'microbead' radiotherapy more effective with molecular imaging." ScienceDaily. www.sciencedaily.com/releases/2010/06/100607142109.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins