Featured Research

from universities, journals, and other organizations

What makes the giant freak wave 'stable'? Researchers develop new statistical model

Date:
June 17, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
The dreaded giant freak wave that can appear on the open sea out of nowhere, can now for the first time be theoretically calculated and modeled: researchers have developed a new statistical model for non-linear, interacting waves in computer simulations. It explains how the water-wave system evolves, behaves and, above all, how it stabilizes itself.

The dreaded giant freak wave that can appear on the open sea out of nowhere, can now for the first time be theoretically calculated and modelled: researchers at the Ruhr- Universität Bochum and the University of Umeå, Sweden have developed a new statistical model for non-linear, interacting waves in computer simulations. It explains how the water-wave system evolves, behaves and, above all, how it stabilises itself. The model is also suitable for the calculation of other "extreme occurrences" -- for example on the stock market -- or more complex phenomena in plasma physics.

Bochum's physicist Prof. Padma Kant Shukla and his Swedish colleague Prof. Bengt Eliasson report on their findings in Physical Review Letters.

Pioneers of the giant freak wave

Shukla and Eliasson already managed to simulate how the giant freak wave occurs on the computer four years ago. If two or more waves meet at a certain relatively small angle, they can progressively "amplify" each other. Two non-linear interacting waves therefore act very differently to a single wave which shows normal instabilities and breaks up into several small waves, which then run diagonally to each other. Two non-linear waves, however, cause the water to behave in a new way, for example, the emergence of downright "wave packets" with amplitudes three times higher than that of a single wave. Buoyed by strong currents and powerful -- opposing -- winds, the giant wave can continuously build up from there.

Bundled energy

With their new statistical model, the scientists have now succeeded in taking another crucial step towards explaining this freak wave: it results from combined non-linear effects in the wave-to-wave interaction and the dispersion of the "wave packets" in a certain direction. This causes the energy of the water to be concentrated "in a narrow band across a confined wavelength spectrum," and with sudden, large amplitude. The actual instability of individual waves is "saturated" through the broadening of the wave spectrum, thus the water-wave system temporarily stabilises itself. This behaviour is typical for the localised giant wave, the researchers explain. Their calculations tally with observations from experiments in large water tanks. "These show that long-crested water waves, i.e. groups of waves propagating in approximately the same direction, have an increased tendency to evoke extreme events," said Shukla and Eliasson.

A step towards prediction

The fact that the giant wave is no "sailor's yarn" has been known at least since the cruise liner Queen Elizabeth 2 encountered such a freak wave in 1995. The damage to passenger and cargo ships, but also for example to oil platforms at sea can be considerable. Shukla and Eliasson's statistical model is a contribution to being able to predict freak waves in certain regions -- for example in the North Atlantic or the Mediterranean -- and providing early warning in future. The deeper physical understanding of the giant wave and statistical calculation would have to be combined with new, improved methods of observation, the researchers say.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bengt Eliasson, P. Shukla. Numerical Investigation of the Instability and Nonlinear Evolution of Narrow-Band Directional Ocean Waves. Physical Review Letters, 2010; 105 (1) DOI: 10.1103/PhysRevLett.105.014501

Cite This Page:

Ruhr-Universitaet-Bochum. "What makes the giant freak wave 'stable'? Researchers develop new statistical model." ScienceDaily. ScienceDaily, 17 June 2010. <www.sciencedaily.com/releases/2010/06/100617075153.htm>.
Ruhr-Universitaet-Bochum. (2010, June 17). What makes the giant freak wave 'stable'? Researchers develop new statistical model. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/06/100617075153.htm
Ruhr-Universitaet-Bochum. "What makes the giant freak wave 'stable'? Researchers develop new statistical model." ScienceDaily. www.sciencedaily.com/releases/2010/06/100617075153.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Scientists Warn Of Likely El Niño Event This Year

Scientists Warn Of Likely El Niño Event This Year

Newsy (Apr. 22, 2014) — With Pacific ocean water already showing signs of warming, the NOAA says there's about a 66 percent chance the event will begin before November. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins