Featured Research

from universities, journals, and other organizations

What makes the giant freak wave 'stable'? Researchers develop new statistical model

Date:
June 17, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
The dreaded giant freak wave that can appear on the open sea out of nowhere, can now for the first time be theoretically calculated and modeled: researchers have developed a new statistical model for non-linear, interacting waves in computer simulations. It explains how the water-wave system evolves, behaves and, above all, how it stabilizes itself.

The dreaded giant freak wave that can appear on the open sea out of nowhere, can now for the first time be theoretically calculated and modelled: researchers at the Ruhr- Universität Bochum and the University of Umeå, Sweden have developed a new statistical model for non-linear, interacting waves in computer simulations. It explains how the water-wave system evolves, behaves and, above all, how it stabilises itself. The model is also suitable for the calculation of other "extreme occurrences" -- for example on the stock market -- or more complex phenomena in plasma physics.

Related Articles


Bochum's physicist Prof. Padma Kant Shukla and his Swedish colleague Prof. Bengt Eliasson report on their findings in Physical Review Letters.

Pioneers of the giant freak wave

Shukla and Eliasson already managed to simulate how the giant freak wave occurs on the computer four years ago. If two or more waves meet at a certain relatively small angle, they can progressively "amplify" each other. Two non-linear interacting waves therefore act very differently to a single wave which shows normal instabilities and breaks up into several small waves, which then run diagonally to each other. Two non-linear waves, however, cause the water to behave in a new way, for example, the emergence of downright "wave packets" with amplitudes three times higher than that of a single wave. Buoyed by strong currents and powerful -- opposing -- winds, the giant wave can continuously build up from there.

Bundled energy

With their new statistical model, the scientists have now succeeded in taking another crucial step towards explaining this freak wave: it results from combined non-linear effects in the wave-to-wave interaction and the dispersion of the "wave packets" in a certain direction. This causes the energy of the water to be concentrated "in a narrow band across a confined wavelength spectrum," and with sudden, large amplitude. The actual instability of individual waves is "saturated" through the broadening of the wave spectrum, thus the water-wave system temporarily stabilises itself. This behaviour is typical for the localised giant wave, the researchers explain. Their calculations tally with observations from experiments in large water tanks. "These show that long-crested water waves, i.e. groups of waves propagating in approximately the same direction, have an increased tendency to evoke extreme events," said Shukla and Eliasson.

A step towards prediction

The fact that the giant wave is no "sailor's yarn" has been known at least since the cruise liner Queen Elizabeth 2 encountered such a freak wave in 1995. The damage to passenger and cargo ships, but also for example to oil platforms at sea can be considerable. Shukla and Eliasson's statistical model is a contribution to being able to predict freak waves in certain regions -- for example in the North Atlantic or the Mediterranean -- and providing early warning in future. The deeper physical understanding of the giant wave and statistical calculation would have to be combined with new, improved methods of observation, the researchers say.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bengt Eliasson, P. Shukla. Numerical Investigation of the Instability and Nonlinear Evolution of Narrow-Band Directional Ocean Waves. Physical Review Letters, 2010; 105 (1) DOI: 10.1103/PhysRevLett.105.014501

Cite This Page:

Ruhr-Universitaet-Bochum. "What makes the giant freak wave 'stable'? Researchers develop new statistical model." ScienceDaily. ScienceDaily, 17 June 2010. <www.sciencedaily.com/releases/2010/06/100617075153.htm>.
Ruhr-Universitaet-Bochum. (2010, June 17). What makes the giant freak wave 'stable'? Researchers develop new statistical model. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/06/100617075153.htm
Ruhr-Universitaet-Bochum. "What makes the giant freak wave 'stable'? Researchers develop new statistical model." ScienceDaily. www.sciencedaily.com/releases/2010/06/100617075153.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins