Featured Research

from universities, journals, and other organizations

Quantum simulations uncover hydrogen's phase transitions

Date:
July 17, 2010
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Hydrogen is the most abundant element in the universe and is a major component of giant planets such as Jupiter and Saturn. But not much is known about what happens to this abundant element under high-pressure conditions when it transforms from one state to another.

Hydrogen is the most abundant element in the universe and is a major component of giant planets such as Jupiter and Saturn.

But not much is known about what happens to this abundant element under high-pressure conditions when it transforms from one state to another.

Using quantum simulations, scientists at the Lawrence Livermore National Laboratory, the University of Illinois at Urbana-Champaign and the University of L'Aquia in Italy were able to uncover these phase transitions in the laboratory similar to how they would occur in the centers of giant planets.

They discovered a first order phase transition, a discontinuity, in liquid hydrogen between a molecular state with low conductivity and a highly conductive atomic state. The critical point of the transition occurs at high temperatures, near 3100 degrees Fahrenheit and more than 1 million atmospheres of pressure.

"This research sheds light on the properties of this ubiquitous element and may aid in efforts to understand the formation of planets," said LLNL's Eric Schwegler.

The team used a variety of sophisticated quantum simulation approaches to examine the onset of molecular diassociation in hydrogen under high-pressure conditions. The simulations indicated there is a range of densities where the electrical conductivity of the fluid increases in a discontinuous fashion for temperatures below 3100 degrees Fahrenheit.

There is a liquid-liquid-solid multiphase coexistence point in the hydrogen phase diagram that corresponds to the intersection of the liquid-liquid phase transition, according to Miguel Morales from the University of Illinois and lead author of a paper appearing online in the Proceedings of the National Academy of Sciences for the week of June 21-25.

Other collaborators include Prof. David Ceperley from the University of Illinois at Urbana-Champaign, and Prof. Carlo Pierleoni from the University of L'Aquila. The work was funded in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. A. Morales, C. Pierleoni, E. Schwegler, D. M. Ceperley. Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1007309107

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Quantum simulations uncover hydrogen's phase transitions." ScienceDaily. ScienceDaily, 17 July 2010. <www.sciencedaily.com/releases/2010/06/100623165125.htm>.
DOE/Lawrence Livermore National Laboratory. (2010, July 17). Quantum simulations uncover hydrogen's phase transitions. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/06/100623165125.htm
DOE/Lawrence Livermore National Laboratory. "Quantum simulations uncover hydrogen's phase transitions." ScienceDaily. www.sciencedaily.com/releases/2010/06/100623165125.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins