Featured Research

from universities, journals, and other organizations

Scientists create 3-D models of whole mouse organs

Date:
June 26, 2010
Source:
Yale University
Summary:
Engineers have for the first time created 3-D models of whole intact mouse organs, a feat they accomplished using fluorescence microscopy.

Collagen fibers (in green) outline the bronchiole pathways against a background of elastin tissue (in red) in this high-resolution image of a mouse lung.
Credit: Photo by Michael Leven/Yale

Yale University engineers have for the first time created 3D models of whole intact mouse organs, a feat they accomplished using fluorescence microscopy. The team reports its findings in the May/June issue of the Journal of Biomedical Optics.

Combining an imaging technique called multiphoton microscopy with "optical clearing," which uses a solution that renders tissue transparent, the researchers were able to scan mouse organs and create high-resolution images of the brain, small intestine, large intestine, kidney, lung and testicles. They then created 3D models of the complete organs -- a feat that, until now, was only possible by slicing the organs into thin sections or destroying them in the process, a disadvantage if more information about the sample is needed after the fact.

With traditional microscopy, researchers are only able to image tissues up to depths on the order of 300 microns, or about three times the thickness of a human hair. In that process, tissue samples are cut into thin slices, stained with dyes to highlight different structures and cell types, individually imaged, then stacked back together to create 3D models. The Yale team, by contrast, was able to avoid slicing or staining the organs by relying on natural fluorescence generated from the tissue itself.

When combined with optical clearing, multiphoton microscopy -- so called because it uses photons to excite naturally fluorescent cells within the tissue -- can image a larger field-of-view at much greater depths and is limited only by the size of the lens used. Once the tissue is cleared using a standard solution that makes it virtually transparent to optical light, the researchers shine different wavelengths of light on it to excite the inherently fluorescent tissue. The fluorescence is displayed as different colors that highlight the different structures and tissue types (in the lung, for example, collagen is depicted as green while elastin shows up as red).

"The intrinsic fluorescence is just as effective as conventional staining techniques," said Michael Levene, associate professor at the Yale School of Engineering & Applied Science and the team leader. "It's like creating a virtual 3D biopsy that can be manipulated at will. And you have the added benefit that the tissue remains intact even after it's been imaged."

The Yale team was able to reach depths in excess of two millimeters -- deep enough to image complete mouse organs. Typical tissue samples taken during patient biopsies are about this size as well, meaning the new technique could be used to create 3D models of biopsies, Levene said. This could be especially useful in tissues where the direction of a cancerous growth may make it difficult to know how to slice tissue sample, he noted.

In addition, the technology could eventually be used to trace fluorescent proteins in the mouse brain and see where different genes are expressed, or to trace where drugs travel in the body using fluorescent tagging, for example.

"Fluorescence microscopy plays such a key role throughout biology and medicine," Leven said. "The range of applications of this technique is immense, including everything from improved evaluation of patient tissue biopsies to fundamental studies of how the brain is wired."

Other authors of the paper include Sonia Parra, Thomas Chia and Joseph Zinter, all of Yale University.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sonia G. Parra, Thomas H. Chia, Joseph P. Zinter, Michael J. Levene. Multiphoton microscopy of cleared mouse organs. Journal of Biomedical Optics, 2010; 15 (3): 036017 DOI: 10.1117/1.3454391

Cite This Page:

Yale University. "Scientists create 3-D models of whole mouse organs." ScienceDaily. ScienceDaily, 26 June 2010. <www.sciencedaily.com/releases/2010/06/100624131439.htm>.
Yale University. (2010, June 26). Scientists create 3-D models of whole mouse organs. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/06/100624131439.htm
Yale University. "Scientists create 3-D models of whole mouse organs." ScienceDaily. www.sciencedaily.com/releases/2010/06/100624131439.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins