Featured Research

from universities, journals, and other organizations

Surprising find may yield new avenue of treatment for painful herniated discs

Date:
June 29, 2010
Source:
Duke University Medical Center
Summary:
An immune cell known to cause chronic inflammation in autoimmune disorders has been identified as a possible culprit in low back pain associated with herniated discs, according to doctors.

An immune cell known to cause chronic inflammation in autoimmune disorders has been identified as a possible culprit in low back pain associated with herniated discs, according to doctors at Duke University Medical Center.

Related Articles


The finding implicates the cytokine molecule interleukin-17, and supports the burgeoning theory that an immune response plays a significant role in disc disease, says William J. Richardson, MD, an orthopedic surgeon at Duke. It may also open the door for new, therapeutic approaches that target a specific immune response in hopes of halting disc destruction, and possibly reversing the disease process.

"By identifying the specific subpopulation of lymphocytes (immune cells that are excited into action by the cytokine), it may soon be possible to arrest the body's inflammatory response to disc cells," says Richardson, senior author of the research published online in the July issue of Arthritis and Rheumatism. Doing so could reduce the painful inflammation associated with degenerative disc disease, and halt the evolution of arthritis. It may also reduce the need for back surgery.

"Mechanical forces may initiate the degenerative process, but biochemical inflammatory changes certainly play a role in disc pathology," says the study's first author, Mohammed Shamji, MD, PhD, senior neurosurgery resident at The Ottawa Hospital, Ontario, Canada, who participated in the research while at Duke. Decreasing the inflammation may arrest or reverse the patient's disease process and perhaps reduce the need for surgery. "Now we are learning which pathways we have to block."

Low back pain is one of the most common reasons people seek medical care, and both degenerative and herniated discs -- also referred to as slipped discs or ruptured discs -- are common causes of that pain. The economic impact of medical care for herniated discs in the U.S. is estimated to be as high as $200 billion per year.

Herniated discs occur when the tough outer layer of cartilage cracks, allowing pieces of the softer inner material to protrude into the spinal canal. Until recently, it was thought that pain occurs when the material touches a nerve. Now doctors believe the pain is the result of an immune response caused by the presence of inflammatory cells.

"The center of the disc is immune-privileged since it has never been exposed to the immune system," says Shamji. When a disc is injured or degenerates, the body reacts against the invading inner material as it would against any virus or foreign body, and launches a response targeted at destruction. The nerve root, which is present near the protruding disc material, becomes painfully inflamed, swollen and damaged during that cascade of events.

In recent years, several anti-immune therapies, including steroids, have been injected into the space between the disc and the nerve, but with limited success, doctors say, because they don't target a specific immune response, and because low doses are used to minimize potentially serious side effects that include a higher predisposition to infection, activation of tuberculosis and a six-fold increase in lymphoma incidence.

The identification of IL-17 in the cascade of events is significant, Shamji says. "It's a product of a specific subgroup of immune cells that are involved in auto immune phenomena like rheumatoid arthritis and asthma, but not in the body's response against infection or tumor. If you target this specific lymphocyte, you may avoid compromising the body's ability to protect itself against infection or tumor."

Researchers say they're still several steps away from human studies of IL-17 blockers currently in development.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Surprising find may yield new avenue of treatment for painful herniated discs." ScienceDaily. ScienceDaily, 29 June 2010. <www.sciencedaily.com/releases/2010/06/100629081632.htm>.
Duke University Medical Center. (2010, June 29). Surprising find may yield new avenue of treatment for painful herniated discs. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/06/100629081632.htm
Duke University Medical Center. "Surprising find may yield new avenue of treatment for painful herniated discs." ScienceDaily. www.sciencedaily.com/releases/2010/06/100629081632.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins