Featured Research

from universities, journals, and other organizations

Diamonds and the holy grail of quantum computing

Date:
June 30, 2010
Source:
American Institute of Physics
Summary:
Most candidate systems for quantum computing work only at very low temperatures. Now a team of researchers from China may have a warmer solution. The team is exploring the capabilities of diamond nitrogen vacancy materials.

Since Richard Feynman's first envisioned the quantum computer in 1982, there have been many studies of potential candidates -- computers that use quantum bits, or qubits, capable of holding an more than one value at a time and computing at speeds far beyond existing silicon-based machines for certain problems. Most of these candidate systems, such as atoms and semiconducting quantum dots, work for quantum computing, but only at very low temperatures.

Now a team of researchers from the Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences and the Hefei National Laboratory for Physical Sciences at the Microscale at the University of Science and Technology of China has made a step toward a warmer solution. As reported in the journal Applied Physics Letters, published by the American Institute of Physics (AIP), the team is exploring the capabilities of diamond nitrogen vacancy (NV) materials. In this material, a "molecule" at the heart of an artificially created diamond film consists of a nitrogen atom (present as in impurity amid all those carbon atoms) and a nearby vacancy, a place in the crystal containing no atom at all. These diamond structures offer the possibility of carrying out data storage and quantum computing at room temperature.

One of the challenges of this technology is the difficulty of coupling two of the NV centers in separate nanocrystals of diamond. To make a quantum computer, many diamond-NV centers need to be coupled (made quantum coherent with each other), encoding the information in each, and operations based on their interactions (or couplings) must be undertaken. Mang Feng of the Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences and his collaborators present an idea that could lead to a quantum mechanical coupling of these NV centers, called entanglement. This proof of principle is now ready to be extended to multiple operations, which is by no means a simple accumulation of the operations.

"Our research is another step in realizing the potential of the long-envisioned quantum computers with techniques available currently or in the near-future," states Dr. Feng, "Continued advances could stimulate further exploration in condensed matter physics, quantum information science and diamond making technology."


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wan-li Yang et al. One-step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Applied Physics Letters, 2010; [link]

Cite This Page:

American Institute of Physics. "Diamonds and the holy grail of quantum computing." ScienceDaily. ScienceDaily, 30 June 2010. <www.sciencedaily.com/releases/2010/06/100629170945.htm>.
American Institute of Physics. (2010, June 30). Diamonds and the holy grail of quantum computing. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/06/100629170945.htm
American Institute of Physics. "Diamonds and the holy grail of quantum computing." ScienceDaily. www.sciencedaily.com/releases/2010/06/100629170945.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins