Featured Research

from universities, journals, and other organizations

Barrier to faster integrated circuits may be mere speed bump, scientists say

Date:
July 6, 2010
Source:
American Institute of Physics
Summary:
Integrated circuits, which enable virtually every electronics gadget you use on a daily basis, are constantly being pushed by the semiconductor industry to become smaller, faster, and cheaper. As has happened many times in the past and will continue in the future, integrated circuit scaling is perpetually in danger of hitting a wall that must be maneuvered around. According to French researchers, in order to continue increasing the speed of integrated circuits, interconnect insulators will require an upgrade to porous, low-dielectric constant materials.

Integrated circuits, which enable virtually every electronics gadget you use on a daily basis, are constantly being pushed by the semiconductor industry to become smaller, faster, and cheaper. As has happened many times in the past and will continue in the future, integrated circuit scaling is perpetually in danger of hitting a wall that must be maneuvered around.

According to Maxime Darnon, a researcher at the French National Center for Scientific Research, in order to continue increasing the speed of integrated circuits, interconnect insulators will require an upgrade to porous, low-dielectric constant materials. Darnon and colleagues discuss the details in the Journal of Applied Physics, which is published by the American Institute of Physics (AIP).

"The integration of a replacement, porous SiCOH (pSiCOH), however, poses serious problems such as an unacceptable 'roughening' that occurs during plasma processing," explains Darnon. "This is considered a 'showstopper' to faster integrated circuits at the moment, so a fundamental understanding of the roughening mechanisms that occur during the etch process of integrated circuit manufacturing is highly desirable to material designers and etch-process engineers.

Darnon's research team proposes a mechanism for the roughening of pSiCOH materials etched in a fluorocarbon-based plasma. They've shown that the problematic roughness results from a cracking of the denser top surface under ion bombardment, and that this roughness propagates through a slower etching of the dense top surface than the modified porous material beneath it. Perhaps more importantly, the team recommends ways to minimize this phenomenon so that the "showstopper" will only be a speedbump on the road to faster integrated circuits.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maxime Darnon et al. Roughening of Porous SiCOH Materials in Fluorocarbon Plasmas. Journal of Applied Physics, 2010; [link]

Cite This Page:

American Institute of Physics. "Barrier to faster integrated circuits may be mere speed bump, scientists say." ScienceDaily. ScienceDaily, 6 July 2010. <www.sciencedaily.com/releases/2010/06/100629170953.htm>.
American Institute of Physics. (2010, July 6). Barrier to faster integrated circuits may be mere speed bump, scientists say. ScienceDaily. Retrieved October 19, 2014 from www.sciencedaily.com/releases/2010/06/100629170953.htm
American Institute of Physics. "Barrier to faster integrated circuits may be mere speed bump, scientists say." ScienceDaily. www.sciencedaily.com/releases/2010/06/100629170953.htm (accessed October 19, 2014).

Share This



More Matter & Energy News

Sunday, October 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins