Featured Research

from universities, journals, and other organizations

Reprogrammed human blood cells show promise for disease research

Date:
July 5, 2010
Source:
Whitehead Institute for Biomedical Research
Summary:
Cells from frozen human blood samples can be reprogrammed to an embryonic stem-cell-like state, according to new research. These cells can be multiplied and used to study the genetic and molecular mechanisms of blood disorders and other diseases. The breakthrough described here allows for study of cells from frozen blood samples already stored at blood banks -- even from deceased patients.

Cells from frozen human blood samples can be reprogrammed to an embryonic-stem-cell-like state, according to Whitehead Institute researchers. These cells can be multiplied and used to study the genetic and molecular mechanisms of blood disorders and other diseases.

The research is reported in the July 2 issue of Cell Stem Cell.

To date, most cellular reprogramming has relied on skin biopsy or the use of stimulating factors to obtain the cells for induction of pluripotency. This work shows for the first time that cells from blood samples commonly drawn in doctor's offices and hospitals can be used to create induced pluripotent stem (iPS) cells.

Using blood as a cell source of iPS cells has two major advantages.

"Blood is the easiest, most accessible source of cells, because you'd rather have 20 milliliters of blood drawn than have a punch biopsy taken to get skin cells," says Judith Staerk, first author of the Cell Stem Cell paper and a postdoctoral researcher in the lab of Whitehead Founding Member Rudolf Jaenisch.

Also, blood collection and storage is a well established part of the medical system.

"There are enormous resources -- blood banks with samples from patients -- that may hold the only viable cells from patients who may not be alive anymore or from the early stage of their diseases," says Jaenisch, who is also a professor of biology at MIT. "Using this method, we can now resurrect those cells as induced pluripotent stem cells. If the patient had a neurodegenerative disease, you can use the iPS cells to study that disease."

iPS cells are reprogrammed from an adult state to an embryonic stem-cell-like state by inserting four reprogramming genes into the adult cells' DNA. These reprogramming factors convert the adult cells, with defined cell functions, into much more flexible iPS cells. iPS cells can then be nudged to divide repeatedly or turn into almost any cell type found in the body, allowing scientists to create large amounts of the specific cells needed to study a disease, such as dopamine-producing neurons for Parkinson's disease research.

Unlike other cell types, human blood cells had proven extremely difficult to convert into iPS cells. Working with frozen blood samples similar to those found in a blood bank, Staerk found that she could convert the blood cells by inserting a "cassette" of the reprogramming factors end to end, rather than inserting each of the factors separately.

Not all of the cells in the blood samples were converted to iPS cells. Blood is composed of red cells that carry oxygen throughout the body, white cells that are part of the immune system, and platelets that clot the blood after an injury. Because red blood cells and platelets lack nuclei containing DNA, they cannot be converted to iPS cells. The only white bloods cells converted to iPS cells were T cells and a few myeloid cells. B cells failed to reprogram, most likely because the experiment's environment lacked the chemicals needed for successful B-cell conversion.

Staerk is particularly interested in using these iPS cells to study blood diseases.

"With this method, you could reprogram blood samples from patients where the underlying cause of their diseases is not known, and get cell numbers large enough to screen for genetic factors and study the molecular mechanisms underlying the blood disorders," she says. "That's a big advance, especially if the patient is not alive anymore and new material cannot be obtained."

This research was supported by the National Institutes of Health (NIH) and the Human Frontier Science Program (HFSP).

Rudolf Jaenisch's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Judith Staerk et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell, July 2, 2010 DOI: 10.1016/j.stem.2010.06.002

Cite This Page:

Whitehead Institute for Biomedical Research. "Reprogrammed human blood cells show promise for disease research." ScienceDaily. ScienceDaily, 5 July 2010. <www.sciencedaily.com/releases/2010/07/100701131207.htm>.
Whitehead Institute for Biomedical Research. (2010, July 5). Reprogrammed human blood cells show promise for disease research. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2010/07/100701131207.htm
Whitehead Institute for Biomedical Research. "Reprogrammed human blood cells show promise for disease research." ScienceDaily. www.sciencedaily.com/releases/2010/07/100701131207.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins