Featured Research

from universities, journals, and other organizations

Tibetan adaptation to high altitude occurred in less than 3,000 years

July 2, 2010
University of California - Berkeley
Scientists have compared the genomes of 50 Tibetans living above 14,000 feet to 40 Han Chinese living at essentially sea level. They found that within the last 3,000 years, Tibetans evolved genetic mutations in a number of genes having to do with how the body deals with oxygen, making it possible for Tibetans to thrive at high altitudes while their Han relatives cannot.

Tibetan woman in Mount Everest National Park. The entire park is located above 3,000 m (9,700 ft).
Credit: iStockphoto/Bartosz Hadyniak

Tibetans have mutations in numerous genes related to how the body uses oxygen. A comparison of the genomes of 50 Tibetans and 40 Han Chinese shows that ethnic Tibetans split off from the Han less than 3,000 years ago and since then rapidly evolved a unique ability to thrive at high altitudes and low oxygen levels.

Related Articles

The genome-wide comparison, performed by evolutionary biologists at the University of California, Berkeley, uncovered more than 30 genes with DNA mutations that have become more prevalent in Tibetans than Han Chinese, nearly half of which are related to how the body uses oxygen. One mutation in particular spread from fewer than 10 percent of the Han Chinese to nearly 90 percent of all Tibetans.

"This is the fastest genetic change ever observed in humans," said Rasmus Nielsen, UC Berkeley professor of integrative biology, who led the statistical analysis. "For such a very strong change, a lot of people would have had to die simply due to the fact that they had the wrong version of a gene."

The widespread mutation in Tibetans is near a gene called EPAS1, a so-called "super athlete gene" identified several years ago and named because some variants of the gene are associated with improved athletic performance, Nielsen said. The gene codes for a protein involved in sensing oxygen levels and perhaps balancing aerobic and anaerobic metabolism.

The new findings could steer scientists to till-now unknown genes that play a role in how the body deals with decreased oxygen, and perhaps explain some diseases, including schizophrenia and epilepsy, associated with oxygen deprivation in the womb, he said.

Nielsen and his colleagues in China and Europe report their findings in the July 2 issue of the journal Science.

Nielsen, a computational evolutionary biologist, mines genomic information to discover genetic changes driven by natural selection as humans and animals have adapted to new environments. Changes in the frequency of DNA mutations are one clue.

"You look for rapid evolution in genes because there must be something important about that gene forcing it to change so fast," he said. "The new finding is really the first time evolutionary information alone has helped us pinpoint an important function of a gene in humans."

Adaptation to low oxygen levels has allowed many peoples, from Andeans to Tibetans, to live at high altitude. When people from lower elevations move above about 13,000 feet, where oxygen levels are about 40 percent lower than at sea level, they typically tire easily, develop headaches, produce babies with lower birth weights and have a higher infant mortality rate. Tibetans have none of these problems, despite lower oxygen saturation in the blood and lower hemoglobin levels. Hemoglobin, which gives blood its red color, binds and transports oxygen to the body's tissues.

Nielsen used genome data produced by the Beijing Genomics Institute (BGI) in Shenzhen, China's flagship genome center, to tease out the genetic changes associated with these physiological changes.

"We're looking for footprints of past selection to find something functional in our genome," Nielsen said

BGI researchers obtained DNA from 50 Tibetans living in the Tibet Autonomous Region of China and 40 Han Chinese from Beijing. The Tibetans lived in two villages located at elevations of 4,300 meters (14,100 feet) and 4,600 meters (15,100 feet). All reported at least three generations of ancestors had lived at the same site. After obtaining informed consent, the Chinese researchers took blood samples from the participants and measured oxygen saturation, red blood cell concentration and hemoglobin content in their blood.

Back in the lab, the BGI team isolated only the active genes, or exons, from each individual, then used next-generation sequencing technology to sequence these so-called exomes. This involved cutting the DNA into many short pieces, sequencing each about 18 times with state-of-the-art Illumina sequencing machines, and then using overlaps to help reassemble the complete genome of each person. That work was directed by Jun Wang of BGI and the University of Copenhagen in Denmark.

Nielsen and post-doctoral fellows John E. Pool, Emilia-Huerta Sanchez and Nicolas Vinckenbosch conducted the analysis at UC Berkeley, locating all point mutations, called single-nucleotide polymorphisms (SNPs), in the 90 genomes and then comparing Tibetan and Han separately to a control group of 100 Europeans (Danes).

The analysis revealed that the common ancestors of Tibetans and Han Chinese split into two populations about 2,750 years ago, with the larger group moving to the Tibetan plateau. That group eventually shrank, while the low-elevation Han population expanded dramatically. Today, the Han Chinese are the dominant ethnic group in mainland China. The Tibetan branch either merged with the people's already occupying the Tibetan plateau, or replaced them.

"We can't distinguish intermixing and replacement," Nielsen said. "The Han Chinese and Tibetans are as different from one another as if the Han completely replaced the Tibetans about 3,000 years ago."

The Tibetan and Han Chinese genomes are essentially identical in terms of the frequency of polymorphisms in the roughly 20,000 genes, though some 30 genes stood out because of dramatic differences between the Tibetans and the Han.

"We made a list of the genes that changed the most," Nielsen said, "and what was fascinating was that, bing!, at the top of that list was a gene that had changed very strongly, and it was related to the response to oxygen."

The SNP with the most dramatic change in frequency, from 9 percent in Han Chinese to 87 percent in Tibetans, was associated with lower red blood cell count and lower hemoglobin levels in Tibetans. That variation occurred near a gene called EPAS1, which earlier studies suggest is involved in regulating hemoglobin in the blood as a response to oxygen levels. The mutation may be in a transcription factor that regulates the activity of EPAS1.

Tibetans carrying only one allele with this mutation had about the same hemoglobin concentration as Han Chinese, but those with two mutated alleles had significantly lower hemoglobin concentration. However, they all have about the same oxygen concentration in the blood. For some reason, individuals with two copies of the mutation function well in high altitude with relatively low hemoglobin concentration in their blood. The mutation seems to provide an alternative inborn mechanism for dealing with the low oxygen levels, Nielsen said.

Other strongly selected variants were near the genes for the fetal and adult versions of the globin genes, which produce the structural proteins of hemoglobin.

Two other genes showing a dramatic shift in frequency have been linked to anemia, while several other genes have been linked to diseases, including schizophrenia and epilepsy, possibly caused by low oxygen levels in the womb.

A large team of researchers from BGI contributed to the study, some of whom are also associated with the Graduate University of the Chinese Academy of Sciences.

The research was funded by various Chinese, American and Danish organizations, including the U.S. National Institutes of Health and the National Science Foundation. The sequenced genomes were part of the international 1000 Genomes Project, which now aims to sequence 2,500 human genomes by the end of 2011.

Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.

Journal Reference:

  1. Xin Yi, Yu Liang, Emilia Huerta-Sanchez, Xin Jin, Zha Xi Ping Cuo, John E. Pool, Xun Xu, Hui Jiang, Nicolas Vinckenbosch, Thorfinn Sand Korneliussen, Hancheng Zheng, Tao Liu, Weiming He, Kui Li, Ruibang Luo, Xifang Nie, Honglong Wu, Meiru Zhao, Hongzhi Cao, Jing Zou, Ying Shan, Shuzheng Li, Qi Yang, Asan, Peixiang Ni, Geng Tian, Junming Xu, Xiao Liu, Tao Jiang, Renhua Wu, Guangyu Zhou, Meifang Tang, Junjie Qin, Tong Wang, Shuijian Feng, Guohong Li, Huasang, Jiangbai Luosang, Wei Wang, Fang Chen, Yading Wang, Xiaoguang Zheng, Zhuo Li, Zhuoma Bianba, Ge Yang, Xinping Wang, Shuhui Tang, Guoyi Gao, Yong Chen, Zhen Luo, Lamu Gusang, Zheng Cao, Qinghui Zhang, Weihan Ouyang, Xiaoli Ren, Huiqing Liang, Huisong Zheng, Yebo Huang, Jingxiang Li, Lars Bolund, Karsten Kristiansen, Yingrui Li, Yong Zhang, Xiuqing Zhang, Ruiqiang Li, Songgang Li, Huanming Yang, Rasmus Nielsen, Jun Wang, and Jian Wang. Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude. Science, 2 July 2010: Vol. 329. no. 5987, pp. 75 - 78 DOI: 10.1126/science.1190371

Cite This Page:

University of California - Berkeley. "Tibetan adaptation to high altitude occurred in less than 3,000 years." ScienceDaily. ScienceDaily, 2 July 2010. <www.sciencedaily.com/releases/2010/07/100701145519.htm>.
University of California - Berkeley. (2010, July 2). Tibetan adaptation to high altitude occurred in less than 3,000 years. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2010/07/100701145519.htm
University of California - Berkeley. "Tibetan adaptation to high altitude occurred in less than 3,000 years." ScienceDaily. www.sciencedaily.com/releases/2010/07/100701145519.htm (accessed March 28, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins