Featured Research

from universities, journals, and other organizations

Fat cells play key role in development of type 2 diabetes

Date:
July 12, 2010
Source:
University of Cincinnati Academic Health Center
Summary:
Cellular changes in fat tissue -- not the immune system -- lead to the "hyperinflammation" characteristic of obesity-related glucose intolerance and type 2 diabetes, according to new research.

Cellular changes in fat tissue -- not the immune system -- lead to the "hyperinflammation" characteristic of obesity-related glucose intolerance and type 2 diabetes, according to new research from the University of Cincinnati (UC).

Related Articles


Cancer and cell biology experts say this new discovery about the cellular mechanisms behind glucose intolerance may provide a different target for drugs to treat type 2 diabetes as well as insights into how aggressive cancers form.

The study, led by Jorge Moscat, PhD, is reported in the July 7, 2010, issue of the scientific journal Cell Metabolism.

For this study, Moscat and his UC collaborator Maria Diaz-Meco, PhD, looked at the role of a specific gene known as protein kinase C (PKC)-zeta, which has been implicated as a key cellular contributor to malignant tumor growth. Using a preclinical animal model, they found that PKC-zeta had a dual role in the molecular signaling that leads to inflammation, switching from acting as a regulator of inflammation to a proinflammation agent in different circumstances.

"This finding is quite novel because current drug development efforts target immune cells (macrophages, T-cells) to eliminate this hyperinflammation. Our research suggests obesity-related glucose intolerance has nothing to do with the immune system. It may be more effective to target adipocytes (fat cells)," explains Moscat, principal investigator of the study and chair of UC's cancer and cell biology department.

In normal cells, explains Moscat, PKC-zeta regulates the balance between cellular inflammatory responses to maintain glucose control. During obesity-induced inflammation, however, the function of PKC-zeta changes and the molecule begins to promote inflammation by causing adipocytes to secrete a substance (IL-6) that travels in large quantities to the liver to cause insulin resistance.

"We believe a similar mechanism of action is at play in malignant tumor development. Now we are trying to understand how PKC-zeta regulates IL6 to better determine how we can manipulate the protein to help prevent diabetes and cancer," he adds.

Moscat and his team are working with investigators at UC's Drug Discovery Center to screen compounds that will inhibit PKC-zeta to be used in further research.

Funding for this research was provided by grants from the National Institutes of Health, American Diabetes Association, UMass Diabetes Endocrinology Research Center and Marie Curie Foundation. UC's Sang Jun Lee, PhD, Ji Young Kim, PhD, Ruben Nogueiras, PhD, Juan Linares, PhD, Diego Perez-Tilve, PhD, Susanna Hofmann, MD, Angela Drew, PhD, and Matthias Tschop, MD, were collaborators on the study. Dae Young-Jung, PhD, Hwi Jin Ko, PhD, Michael Leitges, PhD, and Jason Kim, PhD, of the University of Massachussetts also participated in the study.


Story Source:

The above story is based on materials provided by University of Cincinnati Academic Health Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati Academic Health Center. "Fat cells play key role in development of type 2 diabetes." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/07/100706123013.htm>.
University of Cincinnati Academic Health Center. (2010, July 12). Fat cells play key role in development of type 2 diabetes. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2010/07/100706123013.htm
University of Cincinnati Academic Health Center. "Fat cells play key role in development of type 2 diabetes." ScienceDaily. www.sciencedaily.com/releases/2010/07/100706123013.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mom Triumphs Over Tragedy, Helps Other Families

Mom Triumphs Over Tragedy, Helps Other Families

AP (Mar. 3, 2015) After her son, Dax, died from a rare form of leukemia, Julie Locke decided to give back to the doctors at St. Jude Children&apos;s Research Hospital who tried to save his life. She raised $1.6M to help other patients and their families. (March 3) Video provided by AP
Powered by NewsLook.com
Woman Convicted of Poisoning Son

Woman Convicted of Poisoning Son

AP (Mar. 3, 2015) A woman who blogged for years about her son&apos;s constant health woes was convicted Monday of poisoning him to death by force-feeding heavy concentrations of sodium through his stomach tube. (March 3) Video provided by AP
Powered by NewsLook.com
Treadmill Test Can Predict Chance Of Death Within A Decade

Treadmill Test Can Predict Chance Of Death Within A Decade

Newsy (Mar. 2, 2015) Johns Hopkins researchers analyzed 58,000 heart stress tests to come up with a formula that predicts a person&apos;s chances of dying in the next decade. Video provided by Newsy
Powered by NewsLook.com
Going Gluten-Free Could Get You A Tax Break

Going Gluten-Free Could Get You A Tax Break

Newsy (Mar. 2, 2015) If a doctor advises you to remove gluten from your diet, you could get a tax deduction on the amount you spend on gluten-free foods. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins