Featured Research

from universities, journals, and other organizations

Fat cells play key role in development of type 2 diabetes

Date:
July 12, 2010
Source:
University of Cincinnati Academic Health Center
Summary:
Cellular changes in fat tissue -- not the immune system -- lead to the "hyperinflammation" characteristic of obesity-related glucose intolerance and type 2 diabetes, according to new research.

Cellular changes in fat tissue -- not the immune system -- lead to the "hyperinflammation" characteristic of obesity-related glucose intolerance and type 2 diabetes, according to new research from the University of Cincinnati (UC).

Cancer and cell biology experts say this new discovery about the cellular mechanisms behind glucose intolerance may provide a different target for drugs to treat type 2 diabetes as well as insights into how aggressive cancers form.

The study, led by Jorge Moscat, PhD, is reported in the July 7, 2010, issue of the scientific journal Cell Metabolism.

For this study, Moscat and his UC collaborator Maria Diaz-Meco, PhD, looked at the role of a specific gene known as protein kinase C (PKC)-zeta, which has been implicated as a key cellular contributor to malignant tumor growth. Using a preclinical animal model, they found that PKC-zeta had a dual role in the molecular signaling that leads to inflammation, switching from acting as a regulator of inflammation to a proinflammation agent in different circumstances.

"This finding is quite novel because current drug development efforts target immune cells (macrophages, T-cells) to eliminate this hyperinflammation. Our research suggests obesity-related glucose intolerance has nothing to do with the immune system. It may be more effective to target adipocytes (fat cells)," explains Moscat, principal investigator of the study and chair of UC's cancer and cell biology department.

In normal cells, explains Moscat, PKC-zeta regulates the balance between cellular inflammatory responses to maintain glucose control. During obesity-induced inflammation, however, the function of PKC-zeta changes and the molecule begins to promote inflammation by causing adipocytes to secrete a substance (IL-6) that travels in large quantities to the liver to cause insulin resistance.

"We believe a similar mechanism of action is at play in malignant tumor development. Now we are trying to understand how PKC-zeta regulates IL6 to better determine how we can manipulate the protein to help prevent diabetes and cancer," he adds.

Moscat and his team are working with investigators at UC's Drug Discovery Center to screen compounds that will inhibit PKC-zeta to be used in further research.

Funding for this research was provided by grants from the National Institutes of Health, American Diabetes Association, UMass Diabetes Endocrinology Research Center and Marie Curie Foundation. UC's Sang Jun Lee, PhD, Ji Young Kim, PhD, Ruben Nogueiras, PhD, Juan Linares, PhD, Diego Perez-Tilve, PhD, Susanna Hofmann, MD, Angela Drew, PhD, and Matthias Tschop, MD, were collaborators on the study. Dae Young-Jung, PhD, Hwi Jin Ko, PhD, Michael Leitges, PhD, and Jason Kim, PhD, of the University of Massachussetts also participated in the study.


Story Source:

The above story is based on materials provided by University of Cincinnati Academic Health Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati Academic Health Center. "Fat cells play key role in development of type 2 diabetes." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/07/100706123013.htm>.
University of Cincinnati Academic Health Center. (2010, July 12). Fat cells play key role in development of type 2 diabetes. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/07/100706123013.htm
University of Cincinnati Academic Health Center. "Fat cells play key role in development of type 2 diabetes." ScienceDaily. www.sciencedaily.com/releases/2010/07/100706123013.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins