Featured Research

from universities, journals, and other organizations

Autism-related study discovers how drug interferes with neuronal cell function

Date:
July 7, 2010
Source:
York University
Summary:
A new study has shown for the first time how the drug misoprostol, linked to neurodevelopmental defects associated with autism, interferes with neuronal cell function. It is an important finding because misoprostol is similar in structure to naturally occurring prostaglandins, the key signaling molecules produced by fatty acids in the brain. The study examined mouse neuronal cells to see how the drug interferes at a molecular level with prostaglandins.

A York University study has shown for the first time how the drug misoprostol, which has been linked to neurodevelopmental defects associated with autism, interferes with neuronal cell function.

Related Articles


It is an important finding because misoprostol is similar in structure to naturally-occurring prostaglandins, which are the key signaling molecules produced by fatty acids in the brain.

Past clinical studies have shown an association between misoprostol and severe neurodevelopmental defects including autism symptoms. Those studies looked at cases in Brazil in which women misused the drug early in pregnancy in unsuccessful attempts to terminate their pregnancies.

The York study examined mouse neuronal cells to discover how the drug actually interferes at a molecular level with prostaglandins, which are important for development and communication of cells in the brain.

"Early in the first trimester of pregnancy, neuronal cells reach out to communicate with one another," says Dorota Crawford, an assistant professor in the School of Kinesiology & Health Science in York's Faculty of Health. "Our study shows that misoprostol interferes with this process by increasing the level of calcium ions in neuronal extensions, which reduces the number and length of these extensions. It prevents the cells from communicating with each other. If changes in prostaglandin level alter the development or differentiation of cells, it may have a physiological impact."

Crawford and Javaneh Tamiji, who undertook the research for her master's thesis in the Neuroscience Graduate Diploma Program at York, co-authored a study published online in the journal Biochemical and Biophysical Research Communications: "Prostaglandin E2 and misoprostol induce neurite retraction in Neuro-2a cells."

There is no indication that women in Canada are misusing misoprostol to terminate pregnancies, and in fact the drug is used safely for other purposes such as treatment and prevention of gastrointestinal ulcers. However, during early neuronal development the drug misoprostol or other environmental factors such as infections or inflammations, which can also increase the level of prostaglandins, may interfere with normal brain function, says Crawford.

Crawford and Tamiji focused on the drug misoprostol because they had evidence from the clinical studies of the neurotoxic effects of the drug. They used misoprostol and the naturally occurring prostaglandins side by side in their study and found that both compounds produced the same effects on neuronal cell function.

The study shows that misoprostol interferes with the prostaglandin pathway in a dose-dependent manner -- in other words, the higher the dose, the greater the problems created.

"What that indicates to us is whether it is infection that will activate it, or whether it is the drug, it will cause the same effect," says Crawford.

Now that it has been shown that misoprostol affects interaction between cells, the next step will be to do animal studies on mice to examine the physiological impacts on particular parts of the brain, she says.

Crawford's lab is one of very few in the world that has adopted a multidisciplinary approach to the study of autism spectrum disorders, using molecular techniques to understand the link between causative biological factors (genes and environment) and the behavioural expression.


Story Source:

The above story is based on materials provided by York University. Note: Materials may be edited for content and length.


Cite This Page:

York University. "Autism-related study discovers how drug interferes with neuronal cell function." ScienceDaily. ScienceDaily, 7 July 2010. <www.sciencedaily.com/releases/2010/07/100707112425.htm>.
York University. (2010, July 7). Autism-related study discovers how drug interferes with neuronal cell function. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/07/100707112425.htm
York University. "Autism-related study discovers how drug interferes with neuronal cell function." ScienceDaily. www.sciencedaily.com/releases/2010/07/100707112425.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins