Featured Research

from universities, journals, and other organizations

Light shed on triglyceride metabolism

Date:
August 8, 2010
Source:
Cell Press
Summary:
New findings are offering new leads as to why some people might suffer from high levels of triglycerides. High triglycerides are a risk factor for atherosclerosis and cardiovascular disease. They can also lead to inflammation of the pancreas, the researchers said.

New findings reported in the July issue of Cell Metabolism, are offering new leads as to why some people might suffer from high levels of triglycerides. High triglycerides are a risk factor for atherosclerosis and cardiovascular disease. They can also lead to inflammation of the pancreas, the researchers said.

The team led by Loren Fong and Stephen Young of the University of California, Los Angeles, has identified the component responsible for bringing a key triglyceride-processing enzyme (called lipoprotein lipase or LPL for short) into the capillaries, where it does its work.

"LPL is required for normal metabolism of triglycerides in blood," Fong said. "If there is no LPL, triglycerides accumulate."

Scientists have known for decades that the LPL enzyme is produced in fat and muscle before it makes its way into blood vessels. What they didn't know until now was how it got there.

It seems that a protein known as GPIHBP1 is the key. Mice lacking that protein end up with LPL built up outside of their muscle and fat tissue instead of where it belongs in capillaries. They show that GPIHBP1 normally sits on the surface of capillary cells, where it actively transports LPL.

The new findings offer an explanation for what had been a surprising finding; Gpihbp1-deficient mice develop severe hypertriglyceridemia, even when they eat a normal diet of mouse chow. Very recently, other researchers have also shown that some people with elevated triglyceride levels carry mutations in their GPIHBP1 gene.

Fong and Young say they don't yet know exactly how GPIHBP1 does its job of transporting LPL into capillaries. It's likely that other as-yet unknown players are involved. Their team also suspects that GPIHBP1 may influence triglyceride metabolism in other ways, aside from its transport function.

There is also much left to learn about how the process is regulated in response to diet or other factors. For instance, "if you eat a fatty meal with more lipids, does this transport go faster?" Fong asked.

The findings may help sort out the causes of hypertriglyceridemia, which in many instances remain unclear.

"In humans, mechanisms for severe cases of hypercholesterolemia have come into focus, but the same cannot be said for many cases of severe hypertriglyceridemia," the researchers wrote. Many patients with very high triglyceride levels don't have mutations in any of the genes with known links to the condition and some have no obvious abnormalities in LPL levels either.

"It seems possible that defective transport of LPL into the capillaries could underlie at least some cases of hypertriglyceridemia in humans," they said.

The researchers include Brandon S.J. Davies, University of California, Los Angeles, Los Angeles, CA; Anne P. Beigneux, University of California, Los Angeles, Los Angeles, CA; Richard H. Barnes II, University of California, Los Angeles, Los Angeles, CA; Yiping Tu, University of California, Los Angeles, Los Angeles, CA; Peter Gin, University of California, Los Angeles, Los Angeles, CA; Michael M. Weinstein, University of California, Los Angeles, Los Angeles, CA; Chika Nobumori, University of California, Los Angeles, Los Angeles, CA; Rakel Nyren, Umea University, Umea, Sweden; Ira Goldberg, Columbia University College of Physicians and Surgeons, New York, NY; Gunilla Olivecrona, Umea University, Umea, Sweden; Andre΄ Bensadoun, Cornell University, Ithaca, NY; Stephen G. Young, University of California, Los Angeles, Los Angeles, CA; and Loren G. Fong, University of California, Los Angeles, Los Angeles, CA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brandon S.J. Davies, Anne P. Beigneux, Richard H. Barnes, Yiping Tu, Peter Gin, Michael M. Weinstein, Chika Nobumori, Rakel Nyrιn, Ira Goldberg, Gunilla Olivecrona, Andrι Bensadoun, Stephen G. Young, Loren G. Fong. GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries. Cell Metabolism, July 7, 2010 DOI: 10.1016/j.cmet.2010.04.016

Cite This Page:

Cell Press. "Light shed on triglyceride metabolism." ScienceDaily. ScienceDaily, 8 August 2010. <www.sciencedaily.com/releases/2010/07/100707112427.htm>.
Cell Press. (2010, August 8). Light shed on triglyceride metabolism. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2010/07/100707112427.htm
Cell Press. "Light shed on triglyceride metabolism." ScienceDaily. www.sciencedaily.com/releases/2010/07/100707112427.htm (accessed April 25, 2014).

Share This



More Health & Medicine News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) — A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) — That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) — Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) — The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins