Featured Research

from universities, journals, and other organizations

Miniature energy harvesting technology could power wireless electronics

Date:
July 9, 2010
Source:
Stevens Institute of Technology
Summary:
Newly published research focuses on miniature energy harvesting technologies that could potentially power wireless electronics, portable devices, stretchable electronics, and implantable biosensors.

New research focuses on miniature energy harvesting technologies that could potentially power wireless electronics, portable devices, stretchable electronics, and implantable biosensors.
Credit: Image courtesy of Stevens Institute of Technology

The journal NanoLetters recently published an article highlighting the fascinating nanogenerators developed by Dr. Yong Shi, a professor in the Mechanical Engineering Department at Stevens Institute of Technology.

Dr. Shi's work focuses on miniature energy harvesting technologies that could potentially power wireless electronics, portable devices, stretchable electronics, and implantable biosensors. The concept involves piezoelectric nanowire- and nanofiber-based generators that would power such devices through a conversion of mechanical energy into electrical energy. Dr. Shi uses a piezoelectric nanogenerator based on PZT nanofibers. The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 ėm, are aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 MicroWatts, respectively.

This amazing breakthrough in piezoelectric nanofiber research has incredible potential to enable new technology development across a multitude of science and engineering industries and related research.

"One of the major limitations of current active implantable biomedical devices is that they are battery powered. This means that they either have to be recharged or replaced periodically. Dr. Shi's group has demonstrated a technology that will allow implantable devices to recover some of the mechanical energy in flowing blood or peristaltic fluid movement in the GI tract to power smart implanable biomedical devices," says, Dr. Arthur Ritter, Director of Biomedical Engineering at Stevens. "The fact that his technology is based on nano-structures makes possible power supplies for nano-robots that can exist in the blood stream for extended periods of time and transmit diagnostic data, take samples for biopsy and/or send images wirelessly to external data bases for analysis."

Dr. Shi's groundbreaking work is part of a rich Institute-wide research community that investigates Nanotechnology and Multiscale Systems in a collaborative entrepreneurial environment.

Learn more about Dr. Yong Shi's exciting new PZT nanofibers at: http://www.stevens.edu/research/research_profile.php?fac_id=73


Story Source:

The above story is based on materials provided by Stevens Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xi Chen, Shiyou Xu, Nan Yao, Yong Shi. 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Letters, 2010; 10 (6): 2133 DOI: 10.1021/nl100812k

Cite This Page:

Stevens Institute of Technology. "Miniature energy harvesting technology could power wireless electronics." ScienceDaily. ScienceDaily, 9 July 2010. <www.sciencedaily.com/releases/2010/07/100709131308.htm>.
Stevens Institute of Technology. (2010, July 9). Miniature energy harvesting technology could power wireless electronics. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/07/100709131308.htm
Stevens Institute of Technology. "Miniature energy harvesting technology could power wireless electronics." ScienceDaily. www.sciencedaily.com/releases/2010/07/100709131308.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins