Featured Research

from universities, journals, and other organizations

Origin of key cosmic explosions still a mystery

Date:
July 13, 2010
Source:
Harvard-Smithsonian Center for Astrophysics
Summary:
When a star explodes as a supernova, it shines so brightly that it can be seen from millions of light-years away. One particular supernova variety -- Type Ia -- brightens and dims so predictably that astronomers use them to measure the universe's expansion. The resulting discovery of dark energy and the accelerating universe rewrote our understanding of the cosmos. Yet the origin of these supernovae, which have proved so useful, remains unknown.

This Hubble image reveals the gigantic Pinwheel Galaxy (M101), one of the best known examples of "grand design spirals," and its supergiant star-forming regions in unprecedented detail. Astronomers have searched galaxies like this in a hunt for the progenitors of Type Ia supernovae, but their search has turned up mostly empty-handed.
Credit: NASA/ESA

When a star explodes as a supernova, it shines so brightly that it can be seen from millions of light-years away. One particular supernova variety -- Type Ia -- brightens and dims so predictably that astronomers use them to measure the universe's expansion. The resulting discovery of dark energy and the accelerating universe rewrote our understanding of the cosmos. Yet the origin of these supernovae, which have proved so useful, remains unknown.

"The question of what causes a Type Ia supernova is one of the great unsolved mysteries in astronomy," says Rosanne Di Stefano of the Harvard-Smithsonian Center for Astrophysics (CfA).

Astronomers have very strong evidence that Type Ia supernovae come from exploding stellar remnants called white dwarfs. To detonate, the white dwarf must gain mass until it reaches a tipping point and can no longer support itself.

There are two leading scenarios for the intermediate step from stable white dwarf to supernova, both of which require a companion star. In the first possibility, a white dwarf swallows gas blowing from a neighboring giant star. In the second possibility, two white dwarfs collide and merge. To establish which option is correct (or at least more common), astronomers look for evidence of these binary systems.

Given the average rate of supernovae, scientists can estimate how many pre-supernova white dwarfs should exist in a galaxy. But the search for these progenitors has turned up mostly empty-handed.

To hunt for accreting white dwarfs, astronomers looked for X-rays of a particular energy, produced when gas hitting the star's surface undergoes nuclear fusion. A typical galaxy should contain hundreds of such "super-soft" X-ray sources. Instead we see only a handful. As a result, a recent paper suggested that the alternative, merger scenario was the source of Type Ia supernovae, at least in many galaxies.

That conclusion relies on the assumption that accreting white dwarfs will appear as super-soft X-ray sources when the incoming matter experiences nuclear fusion. Di Stefano and her colleagues have argued that the data do not support this hypothesis.

In a new paper, Di Stefano takes the work a step further. She points out that a merger-induced supernova would also be preceded by an epoch during which a white dwarf accretes matter that should undergo nuclear fusion. White dwarfs are produced when stars age, and different stars age at different rates. Any close double white-dwarf system will pass through a phase in which the first-formed white dwarf gains and burns matter from its slower-aging companion. If these white dwarfs produce X-rays, then we should find roughly a hundred times as many super-soft X-ray sources as we do.

Since both scenarios -- an accretion-driven explosion and a merger-driven explosion -- involve accretion and fusion at some point, the lack of super-soft X-ray sources would seem to rule out both types of progenitor. The alternative proposed by Di Stefano is that the white dwarfs are not luminous at X-ray wavelengths for long stretches of time. Perhaps material surrounding a white dwarf can absorb X-rays, or accreting white dwarfs might emit most of their energy at other wavelengths.

If this is the correct explanation, says Di Stefano, "we must devise new methods to search for the elusive progenitors of Type Ia supernovae."

Di Stefano's paper has been accepted for publication in The Astrophysical Journal and is available online.


Story Source:

The above story is based on materials provided by Harvard-Smithsonian Center for Astrophysics. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Di Stefano. THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES? The Astrophysical Journal, 2010; 712 (1): 728 DOI: 10.1088/0004-637X/712/1/728

Cite This Page:

Harvard-Smithsonian Center for Astrophysics. "Origin of key cosmic explosions still a mystery." ScienceDaily. ScienceDaily, 13 July 2010. <www.sciencedaily.com/releases/2010/07/100712133131.htm>.
Harvard-Smithsonian Center for Astrophysics. (2010, July 13). Origin of key cosmic explosions still a mystery. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2010/07/100712133131.htm
Harvard-Smithsonian Center for Astrophysics. "Origin of key cosmic explosions still a mystery." ScienceDaily. www.sciencedaily.com/releases/2010/07/100712133131.htm (accessed July 24, 2014).

Share This




More Space & Time News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins