Featured Research

from universities, journals, and other organizations

How human immune response to virus is triggered at the atomic level

Date:
July 15, 2010
Source:
Texas A&M AgriLife Communications
Summary:
A team of biochemists has identified the molecular mechanism by which an immune response is triggered by the invading viruses, according to recent research.

A team of biochemists has identified the molecular mechanism by which an immune response is triggered by the invading viruses, according to recent research.

Related Articles


The results could eventually lead to new therapies for many different kinds of viral infections, from the common cold to hepatitis and AIDS, according to Dr. Pingwei Li, Texas A&M University's department of biochemistry and biophysics.

"This work provided insight into how our immune system recognizes viral RNA at the atomic level," Li said.

The results of the team's research were published on July 15 by Structure of Cell Press, said Li, who is one of a 10-member team, four of who are with Li's department.

In the last few years, Li's group studied an enzyme called "RIG-I" that senses the presence of foreign RNA and triggers an innate immune response.

Unlike an adaptive immune response, innate immune response gives immediate protection against infection. Adaptive immune responses are learned by the body -- or "taught" as with inoculation, Li said. But innate immunity is built right into the cell's genetic structure and is ready to respond whenever a pathogen invades the host.

The innate immune system can rapidly respond to an entirely novel virus or bacteriological threat, while the adaptive immune system has to go through a kind of learning process that may take weeks to be effective sometimes. Just as important, the adaptive immune system is coupled to innate immunity, Li said.

Because of this connection to immune response, learning exactly how RIG-I senses foreign viruses promises great rewards in treating a host of diseases, he said.

"It is a very exciting and hot topic among researchers these days," Li said. "A couple of labs were racing to figure out how RIG-I works, but our team was the first to show how RIG-I recognizes the terminal triophosphate of viral RNA. We determined the structure almost a year ago and the result was presented at the Keystone Symposium for Structural Biology early this year."

Viruses contain RNA, which are molecules similar to DNA in many ways but which play different roles. The RNA molecules from virus often have structures that do not exist in human RNA. RIG-I specifically targets these unique structures and launches an immune response by triggering the secretion of interferon, Li said

Interferons are proteins produced and released by the infected cells to fight pathogens such as viruses or bacteria.

But exactly what was the mechanism by which RIG-I triggers the antiviral immune responses? Though there were some clues offered by previous research, it was not clear how it worked at the molecular level, Li said.

Researchers knew, for example, that the RIG-I enzyme specifically targets the structural unit called "5' triphosphate," which is unique to viral RNA. Furthermore, it was known what a particular part of the RIG-I binds to the viral RNA.

"This crucial part is its 'C-terminal domain,' a small RNA binding module capable of recognizing RNA from many different kinds of viruses," he said.

To examine the molecular mechanism of viral RNA sensing by RIG-I, the team used human RIG-I C-terminal domain, and examined the binding action through several different techniques. First, they used gel-filtration chromatography to figure out what kind of RNA binds to RIG-I. Then, using surface plasmon resonance, a biosensor-based technonolgy, they examined how tightly RIG-I binds viral RNA and how fast it "gets on and gets off the enzyme," Li said.

Surface plasmon resonance uses a laser beam to detect molecular bindings, he said.

Next, the team used a sophisticated analytical tool called X-ray crystallography to determine the three-dimensional structure of RIG-I bound to viral RNA.

Much like CAT scan used in hospitals, X-ray crystallography uses an X-ray beam diffracted through a crystal to image the atomic structure of molecules.

"Using a series of X-ray diffraction patterns, a crystallographer produces a 3D image of a molecule," Li said. "The image shows how a protein looks and how it recognizes the other molecules such as proteins or RNA."

Li noted the structure and mechanisms described in the article concerned only a fragment of the RIG-I protein that is responsible for binding to viral RNA. The team is currently working to analyze the full-length protein to gain further insight into how RNA binding activates signaling by RIG-I.

Li received a $1.5 million grant from the National Institutes of Health early this year to continue the research on RIG-I, he said.

"The ultimate goal of this research is to understand how our immune system fights viral infections. Findings from this research will facilitate the development of novel antiviral and anticancer reagents and more effective vaccines."

The research team was led by Li's graduate student Cheng Lu, also with the Texas A&M University biophysics and biochemistry department. Other members of the team were Tim Ho and Fuqu Hu, two first-year graduate students who worked in Li's lab; Drs. Hengyu Xu and Roland Strong, both with the Fred Hutchinson Cancer Research Center, Seattle; Drs. Ranjit-Kumar and Cheng Kao, both with Indiana University; and Monica T. Brooks and Dr. Andrew Herr, both with the University of Cincinnati.


Story Source:

The above story is based on materials provided by Texas A&M AgriLife Communications. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cheng Lu, Hengyu Xu, C.T. Ranjith-Kumar, Monica T. Brooks, Tim Y. Hou, Fuqu Hu, Andrew B. Herr, Roland K. Strong, C. Cheng Kao, and Pingwei Li. The Structural Basis of 5' Triphosphate Double-Stranded RNA Recognition by RIG-I C-Terminal Domain. Structure, 2010; DOI: 10.1016/j.str.2010.05.007

Cite This Page:

Texas A&M AgriLife Communications. "How human immune response to virus is triggered at the atomic level." ScienceDaily. ScienceDaily, 15 July 2010. <www.sciencedaily.com/releases/2010/07/100715123410.htm>.
Texas A&M AgriLife Communications. (2010, July 15). How human immune response to virus is triggered at the atomic level. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/07/100715123410.htm
Texas A&M AgriLife Communications. "How human immune response to virus is triggered at the atomic level." ScienceDaily. www.sciencedaily.com/releases/2010/07/100715123410.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins