Featured Research

from universities, journals, and other organizations

New way to target viruses could make antiviral drugs more effective

Date:
July 21, 2010
Source:
University of Edinburgh
Summary:
Scientists have developed a new way to target viruses which could increase the effectiveness of antiviral drugs. Instead of attacking the virus itself, the method developed at the University of Edinburgh alters the conditions which viruses need to survive and multiply.

Scientists have developed a new way to target viruses which could increase the effectiveness of antiviral drugs.

Instead of attacking the virus itself, the method developed at the University of Edinburgh alters the conditions which viruses need to survive and multiply.

By making the site of infection less hospitable for the virus, the virus becomes less able to mutate and build up resistance to drugs. The researchers were also able to target more than one virus at the same time.

Viruses take up residence in host cells within our body, which produce proteins that enable the virus to multiply and survive.

The study, published in the journal Proceedings of the National Academy of Sciences (PNAS), analysed molecules known as microRNAs, which regulate how much of these proteins are made.

The scientists were able to manipulate the microRNA levels, which enabled them to control a network of proteins and stop viruses from growing.

Most existing antiviral therapies only work against one virus. However, by adapting the virus host environment the researchers were able to target different types of viruses.

It is hoped that the research could lead to new treatments for patients suffering from a range of infections.

Dr Amy Buck, of the University's Centre for Immunity, Infection & Evolution, said: "A problem with current antiviral therapies, which generally target the virus, is that viruses can mutate to become resistant. Since new viral strains emerge frequently, and many infections are difficult to diagnose and treat, it is important to find new ways of targeting infection. Our hope is that we will be able to use host-directed therapies to supplement the natural immune response and disable viruses by taking away what they need to survive."

Scientists studied the herpes family of viruses, which can also cause cancer with the Epstein-Barr virus, and the Semliki Forest virus, which is mainly spread by mosquitoes.

Both viruses have different characteristics. Viruses from the herpes family replicate inside the nuclei of cells, while the Semliki Forest multiplies outside the nucleus of a cell.

Further research has begun to look at how this method could be used to target influenza.

The study was funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council.


Story Source:

The above story is based on materials provided by University of Edinburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Diwakar Santhakumar, Thorsten Forster, Nouf N. Laqtom, Rennos Fragkoudis, Paul Dickinson, Cei Abreu-Goodger, Sergei A. Manakov, Nila Roy Choudhury, Samantha J. Griffiths, Annaleen Vermeulen, Anton J. Enright, Bernadette Dutia, Alain Kohl, Peter Ghazal, and Amy H. Buck. Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1008861107

Cite This Page:

University of Edinburgh. "New way to target viruses could make antiviral drugs more effective." ScienceDaily. ScienceDaily, 21 July 2010. <www.sciencedaily.com/releases/2010/07/100719162649.htm>.
University of Edinburgh. (2010, July 21). New way to target viruses could make antiviral drugs more effective. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/07/100719162649.htm
University of Edinburgh. "New way to target viruses could make antiviral drugs more effective." ScienceDaily. www.sciencedaily.com/releases/2010/07/100719162649.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins