Featured Research

from universities, journals, and other organizations

Drilling down to the nanometer depths of leaves for biofuels

Date:
July 21, 2010
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
By imaging the cell walls of a zinnia leaf down to the nanometer scale, energy researchers have a better idea about how to turn plants into biofuels. A team has used four different imaging techniques to systematically drill down deep into the cells of Zinnia elegans.

A xylem cell with fluorescent lignocellulose bands as the major feature.
Credit: Image courtesy of DOE/Lawrence Livermore National Laboratory

By imaging the cell walls of a zinnia leaf down to the nanometer scale, energy researchers have a better idea about how to turn plants into biofuels.

In a paper appearing online in the journal Plant Physiology, a team from Lawrence Livermore led by Michael Thelen, in collaboration with researchers from Lawrence Berkeley National Lab and the National Renewable Energy Laboratory, has used four different imaging techniques to systematically drill down deep into the cells of Zinnia elegans.

Zinnia is a common garden annual plant with solitary daisy like flower heads on long stems and sandpapery, lace shaped leaves. The leaves of seedlings provide a rich source of single cells that are dark green with chloroplasts and can be cultured in liquid for several days at a time. During the culturing process, the cells change in shape to resemble the tube-like cells that carry water from roots to leaves. Known as xylem, these cells hold the bulk of cellulose and lignin in plants, which are both major targets of recent biofuel research.

Using different microscopy methods, the team was able to visualize single cells in detail, cellular substructures, fine-scale organization of the cell wall, and even chemical composition of single zinnia cells, indicating that they contain an abundance of lignocellulose.

"The basic idea is that cellulose is a polymer of sugars, which if released by enzymes, can be converted into alcohols and other chemicals used in alternative fuel production," Thelen said. "But for this to happen efficiently, we need to find ways to see how this is proceeding at several spatial scales."

To get at the sugars is no easy task. The team had to find ways to overcome the hydrophobic protection of crystalline cellulose provided by lignin in the cell wall. The two polymers, collectively called lignocellulose, are very insoluble, resistant to common chemicals and mechanical breakage, and are a superior substance for providing strength and structure to plants.

The detailed three-dimensional molecular cell wall structure of plants remains poorly understood.

"The capability to image plant cell surfaces at the nanometer scale, together with the corresponding chemical composition, could significantly enhance our understanding of cell wall molecular architecture," said Alex Malkin, a member of the LLNL team who is an expert in atomic force microscopy. "A high resolution structural model is crucial for the successful implementation of new approaches for conversion of biomass to liquid fuels."

To make fuels from plant biomass requires a thorough understanding of the organization of cell walls before determining the best methods for cell wall deconstruction into its components. Catherine Lacayo, a postdoctoral scientist working with Thelen and Malkin, has taken the first steps toward a comprehensive approach.

She came up with techniques that reveal the inner structure of cell walls in these single xylem cells, which represent about 70 percent of the cellulose in plants that can be used in fuel processing. "This approach will be useful for evaluating the responses of plant material to various chemical and enzymatic treatments, and could accelerate the current efforts in lignocellulosic biofuel production."

The research is supported by the Department of Energy Genome Sciences Program through the Office of Biological and Environmental Research, and the DOE's BioEnergy Research Centers in Emeryville and Oak Ridge. It will appear in the September issue of Plant Physiology.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. I. Lacayo, A. J. Malkin, H.-Y. N. Holman, L. Chen, S.-Y. Ding, M. S. Hwang, M. P. Thelen. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements. Plant Physiology, 2010; DOI: 10.1104/pp.110.155242

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Drilling down to the nanometer depths of leaves for biofuels." ScienceDaily. ScienceDaily, 21 July 2010. <www.sciencedaily.com/releases/2010/07/100719162951.htm>.
DOE/Lawrence Livermore National Laboratory. (2010, July 21). Drilling down to the nanometer depths of leaves for biofuels. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/07/100719162951.htm
DOE/Lawrence Livermore National Laboratory. "Drilling down to the nanometer depths of leaves for biofuels." ScienceDaily. www.sciencedaily.com/releases/2010/07/100719162951.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins