Featured Research

from universities, journals, and other organizations

Clean technology in 'hot water'

Date:
July 28, 2010
Source:
NASA/Marshall Space Flight Center
Summary:
What if work performed in space could improve the treatment of household and nuclear waste on Earth? That's what investigators are hoping to do with the results of a fluid physics study in progress on the International Space Station. The experiment, called DECLIC-HTI, is studying supercritical water that could lead to spin-offs in the field of clean technologies for treating waste here on Earth.

The optical fluid cell for the study of water properties inside DECLIC-HTI.
Credit: CNES

What if work performed in space could improve the treatment of household and nuclear waste on Earth? That's what investigators are hoping to do with the results of a fluid physics study in progress on the International Space Station.

The experiment, called DECLIC-HTI, is studying supercritical water that could lead to spin-offs in the field of clean technologies for treating waste here on Earth.

A supercritical fluid is any substance at a temperature and pressure above its critical point -- the point at which the fluid is one homogeneous phase and exhibits properties of both liquids and gases. In this form, the substance can flow through solids like a gas and dissolve materials like a liquid. Water and carbon dioxide are the most commonly used supercritical fluids. Using extremely high temperatures, supercritical water can completely break down waste into benign forms.

DECLIC, or DEvice for the study of Critical LIquids and Crystallization, is a miniaturized, automatic thermo-optical laboratory that studies transparent fluids by finely tuning the temperature of a sample and sending images and video to the ground. The HTI, or high temperature insert, can measure fluid temperatures up to 400 degrees Celsius.

For the experiment, astronauts plug an insert, containing the water sample cell, into the DECLIC payload. The sample is precisely heated and observed in real time by investigators on the ground.

"These phenomena will be of interest to understand the behavior of supercritical fluids in space, but also to improve industrial processes on the ground," said Gabriel Pont, DECLIC mission manager with the CNES, or Centre National d'Etudes Spatiales, in Toulouse, France.

"A typical example is burning completely organic or industrial waste in supercritical water at a much lower temperature than in conventional systems, thus saving energy and being cleaner. Microgravity will provide the ideal environment to understand how to do that."

The supercritical water temperature is very sensitive to gravity and has never been measured in microgravity conditions. "We expect HTI to give us the best measurement of this temperature ever found," added Pont.

The experiment began in October 2009 when the High Temperature Insert commissioning was performed. Since then, four experimental sequences have been performed, leading to more than 80 running days. "We are very excited about what we've seen thus far, and cannot wait to see the potential benefits of our work on Earth," added Pont.


Story Source:

The above story is based on materials provided by NASA/Marshall Space Flight Center. The original article was written by Lori Meggs, AI Signal Research, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Marshall Space Flight Center. "Clean technology in 'hot water'." ScienceDaily. ScienceDaily, 28 July 2010. <www.sciencedaily.com/releases/2010/07/100726141819.htm>.
NASA/Marshall Space Flight Center. (2010, July 28). Clean technology in 'hot water'. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2010/07/100726141819.htm
NASA/Marshall Space Flight Center. "Clean technology in 'hot water'." ScienceDaily. www.sciencedaily.com/releases/2010/07/100726141819.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins