Featured Research

from universities, journals, and other organizations

Snake venom studies yield insights for development of therapies for heart disease and cancer

Date:
July 30, 2010
Source:
American Society for Biochemistry and Molecular Biology
Summary:
Researchers seeking to learn more about stroke by studying how the body responds to toxins in snake venom are this week releasing new findings that they hope will aid in the development of therapies for heart disease and, surprisingly, cancer.

By studying how the body responds to toxins in snake venom, researchers have discovered new clues that they hope will aid in the development of therapies for heart disease and cancer.
Credit: iStockphoto/Chuck Rausin

Researchers seeking to learn more about stroke by studying how the body responds to toxins in snake venom are releasing new findings that they hope will aid in the development of therapies for heart disease and, surprisingly, cancer.

The Japanese team is reporting in a Journal of Biological Chemistry "Paper of the Week" that they are optimistic that inhibiting a protein found on the surface of blood cells known as platelets may combat both irregular blood clotting and the spread of certain cancers throughout the body.

"The finding that platelets not only play a role in blood clotting but also in the development of vessels that allow tumors to flourish was quite unexpected and paves the way for new research on the role or roles of platelets," says Katsue Suzuki-Inoue, the associate professor at the University of Yamanashi who oversaw the 13-person team's work in professor Yukio Ozaki's laboratory.

About platelets, blood clots and stroke

Under normal conditions, platelets are activated to become sticky when blood vessels are injured, and their clumping together (aggregation or clotting) naturally stops bleeding. But, irregular platelet aggregation caused by disease can lead to dangerous clots or even stroke if a clot clogs or bursts in a vessel that carries oxygen and nutrients to the brain.

"When a blood clot, or thrombus, forms during the body's normal repair process, it's doing its job," says Suzuki-Inoue. "But, thrombotic diseases, such as heart attack and stroke, are leading causes of death in developed countries. Understanding and manipulating the underlying chemical reactions could help us save many lives."

But what does this have to do with snake venom? It's sort of a long story.

How venom can prevent or cause clotting

"Snake venom contains a vast number of toxins that target proteins in platelets," says Yonchol Shin, an associate professor at Kogakuin University who specializes in snake toxins. "Some of those toxins prevent platelets from clotting, which can lead to profuse bleeding in snake bite victims. Others, like the one we've focused this research on, potently activate platelets, which results in blood clots. Identification of the molecular targets of many of these toxins has made an enormous contribution to our understanding of platelet activation and related diseases."

Intrigued by the then-recent discovery that elements in snake venom can promote irregular aggregation of platelets -- the kind that leads to clots and stroke -- Inoue's and Ozaki's team set out in 1997 to understand better the molecular underpinnings of those chemical reactions. They hoped that whatever they learned could be applied to the search for new therapies for irregular blood clotting caused by disease.

In 2000, another set of investigators came across a protein on the surface of platelets and dubbed it C-type lectin-like receptor 2, or CLEC-2. At the time, it remained unclear how CLEC-2 was produced or what its job was, but the team suspected it was worth further study.

After six years of research and collaborations with British investigators, the team in 2006 discovered how rhodocytin -- a molecule purified from the venom of the Southeast Asia pit viper Calloselasma rhodastoma -- binds to the CLEC-2 receptor protein on the platelet surface, spurring the platelet to clot with others like it.

Then, in another JBC "Paper of the Week" in 2007, Suzuki-Inoue and her colleagues reported how a separate molecule, called podoplanin, binds to the CLEC-2 platelet receptor protein very much like the venom molecule does. Discovered in 1990, podoplanin is a protein expressed on the surface of cancer cells, and, when bound to the CLEC-2 receptor on platelets, it spurs blood clotting, too.

"To shield themselves from the immune system, cancer cells send out a chemical, podoplanin, which binds to the CLEC-2 receptor protein on platelets, telling the platelets to get together and form a protective barrier around the cancer cells. Once enveloped, the cancer cells are not detected by the immune system and are able to bind to blood vessels' inner linings and spread, or metastasize, throughout the body," she explained.

Using a mouse model, the team in 2008 showed that blocking the tumor protein podoplanin from binding with the platelet receptor protein CLEC-2 could prevent tumors from metastasizing to the lung.

From snake venom to platelets to tumors

The recent investigations by the team, published in the JBC online July 4, hinged on the generation and study of genetically engineered mouse embryos that lacked the platelet receptor protein CLEC-2. In the end, the experiments showed that CLEC-2 is not only necessary for blood clotting but also necessary for the development of a different type of vessel, specifically lymphatic vessels that carry fluid away from tissues and prevent swelling, or edema.

"During fetal development, the CLEC-2 deficiency disturbed the normal process of blood clotting and, in fact, the normal development and differentiation of blood and lymphatic vessels," says Masanori Hirashima, an associate professor at Kobe University. "They had disorganized and blood-filled lymphatic vessels and severe swelling."

Podoplanin, Hirashima explains, is also expressed on the surface of certain types of lymphatic cells and is known to play a role in the development of lymphatic vessels: "These findings suggest that the interaction between CLEC-2 and podoplanin in lymphatic vessels is necessary for the separation between blood vessels and lymphatic vessels."

It has been known that tumors generate blood vessels to promote their growth, and it's possible that the formation of lymphatic vessels also may contribute to the spread of cancer throughout the body, says Osamu Inoue, an assistant professor at the University of Yamanashi.

"We speculate that the interaction between the platelet's CLEC-2 protein and the podoplanin molecule in lymphatic cells plays an essential role in the creation of lymphatic vessels, thereby facilitating tumor growth. If this is the case, a drug that blocks that interaction would prevent the spread of tumors through lymphatic vessels," Inoue said.

By being deemed a "Paper of the Week," the team's work is categorized in the top 1 percent of papers reviewed by the JBC editorial board in terms of significance and overall importance. Other contributors included Guo Ding, Satoshi Nishimura, Kazuya Hokamura, Koji Eto, Hirokazu Kashiwagi, Yoshiaki Tomiyama, Yutaka Yatomi and Kazuo Umemura.


Story Source:

The above story is based on materials provided by American Society for Biochemistry and Molecular Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Suzuki-Inoue, O. Inoue, G. Ding, S. Nishimura, K. Hokamura, K. Eto, H. Kashiwagi, Y. Tomiyama, Y. Yatomi, K. Umemura, Y. Shin, M. Hirashima, Y. Ozaki. Essential in vivo roles of the c-type lectin receptor CLEC-2: Embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. Journal of Biological Chemistry, 2010; DOI: 10.1074/jbc.M110.130575

Cite This Page:

American Society for Biochemistry and Molecular Biology. "Snake venom studies yield insights for development of therapies for heart disease and cancer." ScienceDaily. ScienceDaily, 30 July 2010. <www.sciencedaily.com/releases/2010/07/100729172435.htm>.
American Society for Biochemistry and Molecular Biology. (2010, July 30). Snake venom studies yield insights for development of therapies for heart disease and cancer. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2010/07/100729172435.htm
American Society for Biochemistry and Molecular Biology. "Snake venom studies yield insights for development of therapies for heart disease and cancer." ScienceDaily. www.sciencedaily.com/releases/2010/07/100729172435.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins