Featured Research

from universities, journals, and other organizations

Silicon can be made to melt in reverse

Date:
August 3, 2010
Source:
Massachusetts Institute of Technology
Summary:
Like an ice cube on a warm day, most materials melt -- that is, change from a solid to a liquid state -- as they get warmer. But a few oddball materials do the reverse: They melt as they get cooler. Now a team of researchers has found that silicon, the most widely used material for computer chips and solar cells, can exhibit this strange property of "retrograde melting" when it contains high concentrations of certain metals dissolved in it.

A tiny silicon chip -- the glowing orange square at the center of this special heating device -- is heated to a temperature well below silicon's melting point, and then very slowly cooled down. The chip inside this heating device was placed in the path of a synchrotron beam to probe its changes at a molecular level as it went through the retrograde melting process.
Credit: Patrick Gillooly

Like an ice cube on a warm day, most materials melt -- that is, change from a solid to a liquid state -- as they get warmer. But a few oddball materials do the reverse: They melt as they get cooler. Now a team of researchers at MIT has found that silicon, the most widely used material for computer chips and solar cells, can exhibit this strange property of "retrograde melting" when it contains high concentrations of certain metals dissolved in it.

The material, a compound of silicon, copper, nickel and iron, "melts" (actually turning from a solid to a slush-like mix of solid and liquid material) as it cools below 900 degrees Celsius, whereas silicon ordinarily melts at 1414 degrees C. The much lower temperatures make it possible to observe the behavior of the material during melting, based on specialized X-ray fluorescence microprobe technology using a synchrotron -- a type of particle accelerator -- as a source.

The material and its properties are described in a paper just published online in the journal Advanced Materials. Team leader Tonio Buonassisi, the SMA Assistant Professor of Mechanical Engineering and Manufacturing, is the senior author, and the lead authors are Steve Hudelson MS '09, and postdoctoral fellow Bonna Newman PhD '08.

The findings could be useful in lowering the cost of manufacturing some silicon-based devices, especially those in which tiny amounts of impurities can significantly reduce performance. In the material that Buonassisi and his researchers studied, impurities tend to migrate to the liquid portion, leaving regions of purer silicon behind. This could make it possible to produce some silicon-based devices, such as solar cells, using a less pure, and therefore less expensive, grade of silicon that would be purified during the manufacturing process.

"If you can create little liquid droplets inside a block of silicon, they serve like little vacuum cleaners to suck up impurities," Buonassisi says. This research could also lead to new methods for making arrays of silicon nanowires -- tiny tubes that are highly conductive to heat and electricity.

Buonassisi predicted in a 2007 paper that it should be possible to induce retrograde melting in silicon, but the conditions needed to produce such a state, and to study it at a microscopic level, are highly specialized and have only recently become available. To create the right conditions, Buonassisi and his team had to adapt a microscope "hot-stage" device that allowed the researchers to precisely control the rate of heating and cooling. And to actually observe what was happening as the material was heated and cooled, they drew upon high-power synchrotron-based X-ray sources at Lawrence Berkeley National Laboratory in California and at Argonne National Laboratory in Illinois (researchers from both national labs are co-authors of the paper).

The material for the tests consisted of a kind of sandwich made from two thin layers of silicon, with a filling of copper, nickel and iron between them. This was first heated enough to cause the metals to dissolve into the silicon, but below silicon's melting point. The amount of metal was such that the silicon became supersaturated -- that is, more of the metal was dissolved in the silicon than would normally be possible under stable conditions. For example, when a liquid is heated, it can dissolve more of another material, but then when cooled down it can become supersaturated, until the excess material precipitates out.

In this case, where the metals were dissolved into the solid silicon, "if you begin cooling it down, you hit a point where you induce precipitation, and it has no choice but to precipitate out in a liquid phase," Buonassisi says. It is at that point that the material melts.

Funding was provided by the U.S. Department of Energy, the National Science Foundation, the Clare Booth Luce Foundation, Doug Spreng and the Chesonis Family Foundation, and some equipment was provided by McCrone Scientific


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David L. Chandler, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Steve Hudelson, Bonna K. Newman, Sarah Bernardis, David P. Fenning, Mariana I. Bertoni, Matthew A. Marcus, Sirine C. Fakra, Barry Lai, Tonio Buonassisi. Retrograde Melting and Internal Liquid Gettering in Silicon. Advanced Materials, 2010; DOI: 10.1002/adma.200904344

Cite This Page:

Massachusetts Institute of Technology. "Silicon can be made to melt in reverse." ScienceDaily. ScienceDaily, 3 August 2010. <www.sciencedaily.com/releases/2010/08/100802110815.htm>.
Massachusetts Institute of Technology. (2010, August 3). Silicon can be made to melt in reverse. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/08/100802110815.htm
Massachusetts Institute of Technology. "Silicon can be made to melt in reverse." ScienceDaily. www.sciencedaily.com/releases/2010/08/100802110815.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins