Featured Research

from universities, journals, and other organizations

Spin ice used to examine exotic properties of magnetic systems

Date:
August 9, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
Spin ice can be used to examine exotic properties of magnetic systems. Surprising observations have been made by physicists using magnetic islands only micrometers in size that are placed on a periodic lattice with honeycomb symmetry. When a magnetic field is applied, the system selects an unexpectedly ordered state, hazarding the consequences of having the like poles of the magnets (all south or all north) close together which is energetically unfavorable.

The illustration with a magnetic force microscope shows the arrangement of magnetic north poles (pale points) and south poles (dark points) on a lithographic honeycomb lattice. It is remarkable to see three north or three south poles meeting alternately at most node points. This results in a new magnetic order, which while violating the spin ice rules, is still surprising and fascinating in its regularity.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

Spin ice can be used to examine exotic properties of magnetic systems. Surprising observations have been made by physicists working with Prof. Dr. Hartmut Zabel at the Ruhr-Universitδt, using magnetic islands only micrometres in size that are placed on a periodic lattice with honeycomb symmetry. When a magnetic field is applied, the system selects an unexpectedly ordered state, hazarding the consequences of having the like poles of the magnets (all south or all north) close together which is energetically unfavourable.

Related Articles


"A better understanding and control of such magnetic monopoles in the honeycomb lattice will permit storage of far more information in these states than is the case when using conventional storage techniques that know only two states," is how Prof. Zabel explains the significance of the experiment. A report by the researchers is featured in the current issue of Applied Physics Letters.

Spin ice materials have a lot in common with water ice that has an extremely complex structure. Even when approaching absolutely zero temperature, water is still in a disordered state. This comes from the fact that in ice, one oxygen atom is surrounded by four hydrogen atoms that mark the corners of a tetrahedron. Two hydrogen atoms belong to the original H2O water molecule and the other two to the neighbouring water molecule. The so-called ice rule says that the two original hydrogen atoms take up a position close to the oxygen atom, while the other two are further away: "two in, two out." However, in reality there are always faults in this order.

Magnetic ice

Spin ice is the magnetic equivalent of ice. Here four magnetic dipoles -- atoms with a north and south pole -- sit at the corners of a tetrahedron in a crystal lattice. On heeding the ice rule -- two north poles look out, two in -- then their magnetic forces are balanced with a favourable energetic state. But if one dipole is "turned round," this creates a magnetic monopole. "Free magnetic monopoles don't exist in nature. But spin ice materials give us the possibility of examining the exotic properties of magnetic monopoles and verifying theories about their interaction," explains Prof. Zabel. To this end, the researchers create artificial spin ice lattices using lithographic methods. Magnetic islands only micrometres in size are arranged in the plane so that three or four of their ends meet in one node in each case. Four dipoles produce so-called square spin ice; three dipoles result in triangular spin ice, also referred to as the "honeycomb structure." The honeycomb structure obeys a modified ice rule: one north or south pole looks out, two in: in energetic terms the best possibility, even though it is not completely magnetically balanced.

Tiny magnetic honeycomb islands

The RUB researchers carved magnetic dipole islands out of an iron layer using electron beam lithography and arranged them in a honeycomb structure. "We wanted to see how the dipoles would spontaneously organize themselves immediately after fabrication and how they would cope with the unfavourable magnetic states," explains Prof. Zabel. To do so, they scanned the orientation of every dipole with a magnetic force microscope which determines the direction in which the magnetic north and south pole is pointing. By applying, in addition, a magnetic field, a surprising order in the chaos of possible states is observed. In a regular sequence, three magnetic poles arrange themselves with their north pole pointing into a node, while at the next node they arrange themselves with their south poles pointing in, This yields a highly ordered and almost completely demagnetized state. "To our surprise, the energetically least favourable state with three north or three south poles alternately meeting at the nodes occurs unexpectedly frequently," reports Prof. Zabel.

New storage technique conceivable

"It might look as if we're just playing around, but in fact this can have far-reaching consequences for magnetic logical circuits," says Prof. Zabel. Each node point has eight possible dipole constellations -- far more than with conventional storage techniques based on two states. The dipole islands in the experiments were three micrometres long and 0.3 micrometres wide, but it is conceivable for them to be much smaller -- up to a tiny 300 nanometres in length.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexandra Schumann, Bjφrn Sothmann, Philipp Szary, and Hartmut Zabel. Charge ordering of magnetic dipoles in artificial honeycomb lattices. Applied Physics Letters, 97, 022509 DOI: 10.1063/1.3463482

Cite This Page:

Ruhr-Universitaet-Bochum. "Spin ice used to examine exotic properties of magnetic systems." ScienceDaily. ScienceDaily, 9 August 2010. <www.sciencedaily.com/releases/2010/08/100804110759.htm>.
Ruhr-Universitaet-Bochum. (2010, August 9). Spin ice used to examine exotic properties of magnetic systems. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/08/100804110759.htm
Ruhr-Universitaet-Bochum. "Spin ice used to examine exotic properties of magnetic systems." ScienceDaily. www.sciencedaily.com/releases/2010/08/100804110759.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) — With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) — A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins