Featured Research

from universities, journals, and other organizations

Human embryonic stem cells and reprogrammed cells virtually identical

Date:
August 5, 2010
Source:
Whitehead Institute for Biomedical Research
Summary:
Human embryonic stem cells and adult cells reprogrammed to an embryonic stem cell-like state -- so-called induced pluripotent stem or iPS cells -- exhibit very few differences in their gene expression signatures and are nearly indistinguishable in their chromatin state, according to researchers. Contrary to some recent research, the current findings rekindling hopes that, under the proper circumstances, iPS cells may hold the clinical promise ascribed to them earlier.

Human embryonic stem (ES) cells and adult cells reprogrammed to an embryonic stem cell-like state -- so-called induced pluripotent stem or iPS cells -- exhibit very few differences in their gene expression signatures and are nearly indistinguishable in their chromatin state, according to Whitehead Institute researchers.

The pluripotency of ES cells fueled excitement over their use in regenerative medicine. While ethical hurdles associated with the clinical application of human ES cells appeared to have been overcome with the development of methods to create iPS cells, some recent research has suggested that ES and iPS cells have substantial differences in which sets of genes they express. These findings from Whitehead Institute argue to the contrary, rekindling hopes that, under the proper circumstances, iPS cells may indeed hold the clinical promise ascribed to them earlier.

Human embryonic stem (ES) cells and adult cells reprogrammed to an embryonic stem cell-like state -- so-called induced pluripotent stem or iPS cells -- exhibit very few differences in their gene expression signatures and are nearly indistinguishable in their chromatin state, according to Whitehead Institute researchers.

Their results are published in the August 6 issue of Cell Stem Cell.

iPS cells are made by introducing three key genes into adult cells. These reprogramming factors push the cells from a mature state to a more flexible embryonic stem cell-like state. Like ES cells, iPS cells can then, in theory, be coaxed to mature into almost any type of cell in the body. Unlike ES cells, iPS cells taken from a patient are not likely to be rejected by that patient's immune system. This difference overcomes a major hurdle in regenerative medicine.

"Billions of dollars have been invested in the idea that we will use ES cells at some point in the future as therapeutic or regenerative agents, but for ethical and practical issues, this may not be possible," says Garrett Frampton, a co-first author on the Cell Stem Cell paper and a graduate student in the lab of Whitehead Member Richard Young. "But if they work out therapies with ES cells, and iPS cells are equivalent to ES cells, then the idea is that those therapies could be used with iPS cells as well. Whereas if iPS cells are different from ES cells, then who knows if you can use iPS cells for therapy?"

Since iPS cells were first developed in 2006, the similarities and differences between ES and iPS cells have been hotly debated in the scientific community. Thus far, researchers have gauged the cells' equivalence by determining whether the cells express the same genes, but such studies have yielded mixed results.

In revisiting the question of the cells' equivalence, Frampton and co-first author Matthew Guenther, who is a scientist in the Young lab, analyzed gene expression patterns and the cells' chromatin structure. Chromatin is the packaging of DNA around a protein scaffold. Variations in chromatin "packaging" can themselves alter gene expression, yet Guenther and Frampton found that human iPS and ES cells to be almost identical in both gene expression and chromatin structure.

"At this stage, we can't yet prove that they are absolutely identical, but the available technology doesn't reveal differences," says Young, who is also a biology professor at MIT. "It does mean that iPS cells could be useful as personal ES cells in the future."

Some earlier studies have indicated that iPS and ES cells are dissimilar enough to be classified as different cell types. To see why the results differed so strikingly from theirs, Guenther and Frampton reanalyzed those studies' data. They concluded that the differences noted in other studies were not consistent between different laboratories and thus were not likely to be a result of fundamental differences between the cell types.

"The key question is, are any of these differences functionally relevant? Do they change how a cell matures or not?" says Whitehead Member Rudolf Jaenisch, whose lab worked closely with Guenther and Frampton. "The earlier documented differences were more noise than anything. But other tests may give you a different answer. So it is still an open question, something that the field will continue to struggle with and have to decide."

Guenther agrees.

"Our paper addresses the ground state of iPS and ES cells in a laboratory setting," he says. "But we don't know for a fact that they won't behave differently when they mature into various cell types or tissues. That's the next step."

This research was supported by donations from Liliana and Hillel Bachrach, Landon Clay, and Susan Whitehead.


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. The original article was written by Nicole Giese. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guenther et al. Chromatin Structure and Gene Expression Programs of Human Embryonic and Induced Pluripotent Stem Cells. Cell Stem Cell, 2010; 7 (2): 249 DOI: 10.1016/j.stem.2010.06.015

Cite This Page:

Whitehead Institute for Biomedical Research. "Human embryonic stem cells and reprogrammed cells virtually identical." ScienceDaily. ScienceDaily, 5 August 2010. <www.sciencedaily.com/releases/2010/08/100805142957.htm>.
Whitehead Institute for Biomedical Research. (2010, August 5). Human embryonic stem cells and reprogrammed cells virtually identical. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/08/100805142957.htm
Whitehead Institute for Biomedical Research. "Human embryonic stem cells and reprogrammed cells virtually identical." ScienceDaily. www.sciencedaily.com/releases/2010/08/100805142957.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) — A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) — Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins