Featured Research

from universities, journals, and other organizations

Brain responds same to acute and chronic sleep loss, research finds

Date:
August 10, 2010
Source:
University of Wisconsin School of Medicine and Public Health
Summary:
Burning the candle at both ends for a week may take an even bigger toll than you thought.

Burning the candle at both ends for a week may take an even bigger toll than you thought.

Related Articles


Researchers at the University of Wisconsin-Madison have found that five nights of restricted sleep--four hours a night--affect the brain in a way similar to that seen after acute total sleep deprivation.

The new study in rats, appearing in the current online edition of the Proceedings of the National Academy of Sciences, adds to the growing evidence scientists are accumulating about the negative effects of restricted sleep for both the brain and the body.

"There's a huge amount of interest in sleep restriction in the field today," says Dr. Chiara Cirelli, associate professor of psychiatry at the School of Medicine and Public Health, who led the research.

Many people are sleep restricted, either because they have to or because they choose to be, she says.

"Instead of going to bed when they are tired, like they should, people watch TV and want to have an active social life," she says. "People count on catching up on their sleep on the weekends, but it may not be enough."

This "casual" lack of sleep can be harmful.

"Even relatively mild sleep restriction for several nights can affect an individual's ability to perform cognitive tasks," Cirelli says. "For instance, recent studies in humans have shown that 5 days with only 4 h of sleep/night result in cumulative deficits in vigilance and cognition, and these deficits do not fully recover after one night of sleep, even if 10 hours in bed are allowed. Sleep restriction can also increase resistance to insulin, leading to a risk of diabetes."

Cirelli and her team kept rats awake 20 hours a day over five days while continuously recording the animals' brain waves with a sophisticated EEG as they were asleep and awake. The EEGs measured slow wave activity (SWA), the best marker of an individual's need to sleep as well as the intensity of sleep that follows a period of wakefulness.

"Slow-wave activity reflects the fact that sleep is regulated by homeostasis: in general, the longer we stay awake, the higher is SWA in the subsequent sleep. We knew that this was true after acute total sleep deprivation (for instance when we stay up all night); now we found that this is also true after chronic sleep restriction. " Cirelli notes..

According to the rat cumulative SWA measures, the sleep restriction produced intense recovery sleep following each wake cycle, with both longer and deeper sleep. The more effective the researchers were in keeping the animals awake during those 20 hours, the larger the sleep rebound they saw during the following four hours.

"It was an indirect but powerful indication of how sleepy the animals actually were," Cirelli says.

Even when the animals seemed awake and were moving around, heightened SWA was evident in their "wake" EEG.

"Monitoring SWA levels during waking time is very important in understanding the whole picture," she says. "High SWA levels during periods of both sleeping and waking signal that you need to go to sleep."

The researchers also found that SWA levels were different in different areas of the brain, and they speculate that this may depend on what parts of the brain had been used during the waking period.

Knowing that sleep restriction evokes the same brain response as sleep deprivation will help scientists better understand the harmful effects of sleep disturbances, says Cirelli.

"Scientists have learned much from 40 years of studies on total sleep deprivation, she says. "Now we know we can apply the lessons we learned from acute sleep deprivation to chronic sleep restriction, which is very relevant to people's lives today."

Co-authors include Susan Leemburg, Vladyslav V. Vyazovkiy, Umberto Olcese, Claudio L Bassetti and Giulio Tononi.


Story Source:

The above story is based on materials provided by University of Wisconsin School of Medicine and Public Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Susan Leemburg, Vladyslav V. Vyazovskiy, Umberto Olcese, Claudio L. Bassetti, Giulio Tononi, and Chiara Cirelli. Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1002570107

Cite This Page:

University of Wisconsin School of Medicine and Public Health. "Brain responds same to acute and chronic sleep loss, research finds." ScienceDaily. ScienceDaily, 10 August 2010. <www.sciencedaily.com/releases/2010/08/100809161230.htm>.
University of Wisconsin School of Medicine and Public Health. (2010, August 10). Brain responds same to acute and chronic sleep loss, research finds. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2010/08/100809161230.htm
University of Wisconsin School of Medicine and Public Health. "Brain responds same to acute and chronic sleep loss, research finds." ScienceDaily. www.sciencedaily.com/releases/2010/08/100809161230.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins