Featured Research

from universities, journals, and other organizations

Preclinical inquiry into one mutation sheds light on addiction and a birth defect

Date:
August 16, 2010
Source:
Duke University Medical Center
Summary:
When a certain protein is mutated or missing, symptoms of the neurodevelopmental disorder Rett syndrome arise, causing a gradual loss of brain function during early development. This fact led researchers to test a theory that the protein might also contribute to nerve-cell connection (synapse) changes in a fully formed adult mouse brain when exposed to psychostimulant use.

When a certain protein is mutated or missing, symptoms of the neurodevelopmental disorder Rett syndrome arise, causing a gradual loss of brain function during early development.

This fact led Duke University Medical Center researchers to test a theory that the protein might also contribute to nerve-cell connection (synapse) changes in a fully formed adult mouse brain when exposed to psychostimulant use.

In two experiments with mice, Anne West, M.D., Ph.D., an assistant professor of neurobiology, and Duke colleagues found that virally manipulating levels of the methyl-binding protein MeCP2 in the brains of adult mice affected their place preference, a measure of the rewarding properties of the amphetamines the mice consumed in that location. The mice that had less of the MeCP2 protein kept returning to the same location in hope of getting more of the drug.

The study was published Aug. 15 in Nature Neuroscience.

Scientists have speculated that psychostimulant drugs make long-lasting changes to synapses that lead to addictive types of behavior. When the researchers changed the expression levels of MeCP2, they noticed a proportional relationship.

"The body may increase MeCP2 as a way to reset the reward threshold," West said. "You decrease the sense of reward when you increase MeCP2. It might be the body's compensation and way to maintain balance."

These studies show that MeCP2 is involved in the process through which repeated amphetamine use changes both the structure and the function of the brain, West said.

"Until now, nobody had experimentally linked MeCP2 to the effects of stimulant drugs," West said. "I was surprised that subtle manipulations of the protein in adult mice had effects on behavior that were profound. In addition there are multiple effects of losing MeCP2 in mutant mice and we could see the effects on brain development in the young mice."

The study suggests that the methyl-DNA binding protein MeCP2 is important in regulating the rewarding properties of psychostimulant drugs, which may lead to treatments for people who overuse stimulants, West said.

"MeCP2 is a transcriptional regulator that responds to an extracellular stimulus like an amphetamine, and we showed that it can modulate synapses in the part of the brain (nucleus accumbens) that is responsible for reward," she said.

She said the next step is to learn what is happening on a molecular level to cause these effects.

The study was funded by National Institute of Drug Abuse grants, a March of Dimes Foundation grant, the Duke University postdoctoral training program in Fundamental and Translational Neuroscience, and the predoctoral Pharmacological Sciences Training Program.

Other authors include lead author Jie V. Deng and Ashley N. Hutchinson of the Department of Neurobiology; Il-Hwan Kim and Ramona Rodriguiz of the Department of Psychiatry and Behavioral Sciences (Rodriguiz is also with the Mouse Behavioral and Neuroendocrine Analysis Core Facility); and William C. Wetsel, who is affiliated with all of these departments and the Duke Department of Cell Biology.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jie V Deng, Ramona M Rodriguiz, Ashley N Hutchinson, Il-Hwan Kim, William C Wetsel & Anne E West. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nature Neuroscience, 2010; DOI: 10.1038/nn.2614

Cite This Page:

Duke University Medical Center. "Preclinical inquiry into one mutation sheds light on addiction and a birth defect." ScienceDaily. ScienceDaily, 16 August 2010. <www.sciencedaily.com/releases/2010/08/100815162134.htm>.
Duke University Medical Center. (2010, August 16). Preclinical inquiry into one mutation sheds light on addiction and a birth defect. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/08/100815162134.htm
Duke University Medical Center. "Preclinical inquiry into one mutation sheds light on addiction and a birth defect." ScienceDaily. www.sciencedaily.com/releases/2010/08/100815162134.htm (accessed April 19, 2014).

Share This



More Mind & Brain News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins