Featured Research

from universities, journals, and other organizations

Repairing spinal cord injury with manipulated neural stem cells

Date:
August 18, 2010
Source:
Journal of Clinical Investigation
Summary:
One of the most common causes of disability in young adults is spinal cord injury. Currently, there is no proven reparative treatment. However, hope that neural stem cells might be of benefit to individuals with severe spinal cord injury has now been provided new research using a mouse model of this devastating condition.

One of the most common causes of disability in young adults is spinal cord injury. Currently, there is no proven reparative treatment. Hope that neural stem cells (NSCs) might be of benefit to individuals with severe spinal cord injury has now been provided by the work of a team of researchers, led by Kinichi Nakashima, at Nara Institute of Science and Technology, Japan, in a mouse model of this devastating condition.

Related Articles


In the study, mice with severe spinal cord injury were transplanted with NSCs and administered a drug known as valproic acid, which is used in the treatment of epilepsy. The valproic acid promoted the transplanted NSCs to generate nerve cells, rather than other brain cell types, and the combination therapy resulted in impressive restoration of hind limb function. The authors hope that this approach, whereby the fate of transplanted NSCs is manipulated, for example by administration of valproic acid, could be developed as an effective treatment for severe spinal cord injury.

In an accompanying commentary, Tamir Ben-Hur, at Hadassah Hebrew University Medical School, Israel, highlights the impressive functional recovery attained using this approach but cautions that further work is needed before it can be determined whether this approach will work in human patients.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Abematsu et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. Journal of Clinical Investigation, 2010; DOI: 10.1172/JCI42957

Cite This Page:

Journal of Clinical Investigation. "Repairing spinal cord injury with manipulated neural stem cells." ScienceDaily. ScienceDaily, 18 August 2010. <www.sciencedaily.com/releases/2010/08/100816122130.htm>.
Journal of Clinical Investigation. (2010, August 18). Repairing spinal cord injury with manipulated neural stem cells. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2010/08/100816122130.htm
Journal of Clinical Investigation. "Repairing spinal cord injury with manipulated neural stem cells." ScienceDaily. www.sciencedaily.com/releases/2010/08/100816122130.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins