Featured Research

from universities, journals, and other organizations

Stretched polymer snaps back smaller than it started

Date:
August 30, 2010
Source:
Duke University
Summary:
Crazy bands are cool because no matter how long they've been stretched around a kid's wrist, they always return to their original shape, be it a lion or a kangaroo. Now chemists have found a polymer molecule that's so springy it snaps back from stretching much smaller than it was before.

A ring-like polymer molecule called gDFC was stretched by an ultrasonic process and then sprung back somewhat smaller than before (right).
Credit: Image courtesy of Duke University

Crazy bands are cool because no matter how long they've been stretched around a kid's wrist, they always return to their original shape, be it a lion or a kangaroo.

Related Articles


Now a Duke and Stanford chemistry team has found a polymer molecule that's so springy it snaps back from stretching much smaller than it was before.

Duke graduate student Jeremy Lenhardt and associate professor Stephen Craig have been systematically hunting through a library of polymers in search of a molecule that might be useful for "self-healing" materials. They hope to find a polymer that can trigger a chemical reaction when it is stretched and enable a material to build its own repairs.

Imagine a sheet of Saran Wrap that could fix a microscopic puncture before the hole ever got big enough to see. This would require that the polymer molecules immediately around the tear could somehow jump into action and perform new chemistry to build bridges across the hole.

To stretch polymers and see what happens to them, Lenhardt uses an apparatus that pumps up and down on a solution filled with polymers, pressurizing it and depressurizing it 20,000 times a second which causes tiny bubbles to form fleetingly. The void created by the bubbles exerts a tug on the ends of some of the polymers in the solution and stretches them, if only for a billionth of a second.

"Think of two rafts going down a river with a rope between them," Craig explained. "As the first raft enters a rapids and accelerates forward, that rope -- the polymer -- gets pulled taught and stretches."

Over and over Lenhardt ran the experiment, characterizing different polymer species that became more reactive when stretched, potentially able to do "stress-induced chemistry."

Then, while looking at polymers that contained tiny ring-shaped molecules called gem-difluorocyclopropanes (gDFC), he was surprised to find that some of these molecules emerged from the stretching noticeably shorter than when they went in.

"I ran up to his office," Lenhardt said. " 'Steve, something funny is going on here. Look at this!' " A technique called nuclear magnetic resonance had revealed the shapes of the rings after pulling and shown that they were, in fact, shorter.

But not only were the gDFCs snapping back smaller than they started, it also appeared that before snapping back they were actually trapped in an unusual stretched state far longer than normal, a reactive state called a 1,3-diradical.

Normally, as a molecule goes through a reaction, it passes through a special point known as a transition state, and stays there for only ten to a hundred femtoseconds, "a tenth of a millionth of a millionth of a second," Craig said. This makes it extraordinary hard to actually watch chemistry happen, so chemists usually can only infer what happens at the transition state by what they've seen before and after.

Work by their Stanford collaborators showed that the trapped 1,3-diradicals are in fact one type of these usually fast-moving transition states, but in Lenhardt's experiments they were essentially stopped in their tracks and trapped for nanoseconds, tens of thousands of times longer than usual.

This might be a window for watching transition states in action, Craig said. "We can trap these things long enough to probe new facets of their reactivity."

Lenhardt has begun doing just that, stretching the polymers to learn more about these transition states and seeing if he can watch other molecules by using this technique as a sort of stop-action camera.

"Every chemical reaction has a high energy state that you have to guess at," Lenhardt said. "But maybe, in some cases, you don't have to guess anymore."

The team's findings appear Aug. 27 in Science.

Other team members include Duke undergraduate Robert Choe and at Stanford, graduate student Mitchell Ong, postdoc Christian Evenhuis and professor Todd Martinez.

The research was funded by the U.S. Army Research Laboratory and the Army Research Office.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Karl Leif Bates. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lenhardt et al. Trapping a Diradical Transition State by Mechanochemical Polymer Extension. Science, 2010; 329 (5995): 1057 DOI: 10.1126/science.1193412

Cite This Page:

Duke University. "Stretched polymer snaps back smaller than it started." ScienceDaily. ScienceDaily, 30 August 2010. <www.sciencedaily.com/releases/2010/08/100826162017.htm>.
Duke University. (2010, August 30). Stretched polymer snaps back smaller than it started. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/08/100826162017.htm
Duke University. "Stretched polymer snaps back smaller than it started." ScienceDaily. www.sciencedaily.com/releases/2010/08/100826162017.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins