Featured Research

from universities, journals, and other organizations

How information is coded in the brain: New theory about signal propagation

Date:
August 30, 2010
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
For more than fifty years, the neuroscience community has been engaged in an intensive debate on how information is coded in the brain and transmitted reliably from one brain region to the next. Mutually exclusive coding systems have been proposed and are being energetically supported. Scientists in Germany have now demonstrated that earlier studies were based on rather extreme propositions.

For more than fifty years, the neuroscience community has been engaged in an intensive debate on how information is coded in the brain and transmitted reliably from one brain region to the next. Mutually exclusive coding systems have been proposed and are being energetically supported.

Scientists from Freiburg University have now been able to demonstrate (in a forthcoming issue of Nature Reviews Neuroscience) that earlier studies were based on rather extreme propositions. Instead, it is possible that under certain conditions, both proposed codes can be simultaneously employed within the brain.

One of the unsolved puzzles of the brain is the question of which code is being used when nerve cells communicate with each other. It has been known for more than a century that the basic unit of communication within the nervous system is the pulse-like fluctuation in voltage at the membrane of neurons. But there is still an ongoing debate about how these so-called action potentials are combined to form a code for the actual processing and transmission of information. Two forms of coding are popular candidates: one is based on the rate of action potentials (rate coding) and the other relies on the timing of their occurrences (temporal coding).

So far, the nature of the neural code has remained largely elusive to experimental brain research. Even the brains of insects are too complex for today's scientists to determine which code they use. Theoretical approaches, simulating brain processes by means of computer models, therefore play an important role within modern neuroscience and can address these and other questions.

Models presented in earlier studies suggested that only one of the two proposed codes could be employed at any time in neuronal networks. Depending on the way how neurons contact each other, either pulse rate or timings could be transmitted reliably.

Arvind Kumar, Stefan Rotter and Ad Aertsen from the Bernstein Center Freiburg now propose that under certain conditions, both forms of coding can in fact be employed simultaneously. The scientists they argue that earlier studies did not recognise the possible coexistence of both codes, because they represent two extremes of a continuum of biologically plausible conditions.

In the article available online now, the scientists demonstrate that earlier findings can be reconciled into a larger conceptual framework of neural coding and transmission. In addition, their analysis of the required conditions shows that it is actually possible to use both codes simultaneously in one neuronal network. Thus, for the first time, conditions for this coexistence of different neural codes have been identified. This provides valuable clues what to analyse in future experiments when trying to identify the codes that are used by "real" brains.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arvind Kumar, Stefan Rotter & Ad Aertsen. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nature Reviews Neuroscience, 2010; 11: 615-627 DOI: 10.1038/nrn2886

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "How information is coded in the brain: New theory about signal propagation." ScienceDaily. ScienceDaily, 30 August 2010. <www.sciencedaily.com/releases/2010/08/100827101917.htm>.
Albert-Ludwigs-Universität Freiburg. (2010, August 30). How information is coded in the brain: New theory about signal propagation. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/08/100827101917.htm
Albert-Ludwigs-Universität Freiburg. "How information is coded in the brain: New theory about signal propagation." ScienceDaily. www.sciencedaily.com/releases/2010/08/100827101917.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) — Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) — America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) — A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins