Featured Research

from universities, journals, and other organizations

How information is coded in the brain: New theory about signal propagation

Date:
August 30, 2010
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
For more than fifty years, the neuroscience community has been engaged in an intensive debate on how information is coded in the brain and transmitted reliably from one brain region to the next. Mutually exclusive coding systems have been proposed and are being energetically supported. Scientists in Germany have now demonstrated that earlier studies were based on rather extreme propositions.

For more than fifty years, the neuroscience community has been engaged in an intensive debate on how information is coded in the brain and transmitted reliably from one brain region to the next. Mutually exclusive coding systems have been proposed and are being energetically supported.

Related Articles


Scientists from Freiburg University have now been able to demonstrate (in a forthcoming issue of Nature Reviews Neuroscience) that earlier studies were based on rather extreme propositions. Instead, it is possible that under certain conditions, both proposed codes can be simultaneously employed within the brain.

One of the unsolved puzzles of the brain is the question of which code is being used when nerve cells communicate with each other. It has been known for more than a century that the basic unit of communication within the nervous system is the pulse-like fluctuation in voltage at the membrane of neurons. But there is still an ongoing debate about how these so-called action potentials are combined to form a code for the actual processing and transmission of information. Two forms of coding are popular candidates: one is based on the rate of action potentials (rate coding) and the other relies on the timing of their occurrences (temporal coding).

So far, the nature of the neural code has remained largely elusive to experimental brain research. Even the brains of insects are too complex for today's scientists to determine which code they use. Theoretical approaches, simulating brain processes by means of computer models, therefore play an important role within modern neuroscience and can address these and other questions.

Models presented in earlier studies suggested that only one of the two proposed codes could be employed at any time in neuronal networks. Depending on the way how neurons contact each other, either pulse rate or timings could be transmitted reliably.

Arvind Kumar, Stefan Rotter and Ad Aertsen from the Bernstein Center Freiburg now propose that under certain conditions, both forms of coding can in fact be employed simultaneously. The scientists they argue that earlier studies did not recognise the possible coexistence of both codes, because they represent two extremes of a continuum of biologically plausible conditions.

In the article available online now, the scientists demonstrate that earlier findings can be reconciled into a larger conceptual framework of neural coding and transmission. In addition, their analysis of the required conditions shows that it is actually possible to use both codes simultaneously in one neuronal network. Thus, for the first time, conditions for this coexistence of different neural codes have been identified. This provides valuable clues what to analyse in future experiments when trying to identify the codes that are used by "real" brains.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arvind Kumar, Stefan Rotter & Ad Aertsen. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nature Reviews Neuroscience, 2010; 11: 615-627 DOI: 10.1038/nrn2886

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "How information is coded in the brain: New theory about signal propagation." ScienceDaily. ScienceDaily, 30 August 2010. <www.sciencedaily.com/releases/2010/08/100827101917.htm>.
Albert-Ludwigs-Universität Freiburg. (2010, August 30). How information is coded in the brain: New theory about signal propagation. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/08/100827101917.htm
Albert-Ludwigs-Universität Freiburg. "How information is coded in the brain: New theory about signal propagation." ScienceDaily. www.sciencedaily.com/releases/2010/08/100827101917.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins