Featured Research

from universities, journals, and other organizations

Microfluidic device allows collection, analysis of hard-to-handle immune cells

Date:
August 31, 2010
Source:
Massachusetts General Hospital
Summary:
Scientists have developed a new microfluidic tool for quickly and accurately isolating neutrophils -- the most abundant type of white blood cell -- from small blood samples, an accomplishment that could provide information essential to better understanding the immune system's response to traumatic injury.

A team led by Massachusetts General Hospital (MGH) scientists has developed a new microfluidic tool for quickly and accurately isolating neutrophils -- the most abundant type of white blood cell -- from small blood samples, an accomplishment that could provide information essential to better understanding the immune system's response to traumatic injury.

The system, described in a Nature Medicine paper that received advance online release, also can be adapted to isolate almost any type of cell.

"Neutrophils are currently garnering a lot of interest from researchers and clinicians, but collecting and processing them has been a real challenge," says Kenneth Kotz, PhD, of the MGH Center for Engineering in Medicine, lead author of the study. "This tool will allow a new range of studies and diagnostics based on cell-specific genomic and proteomic signatures."

Part of the body's first-line defense against injury or infection, neutrophils were long thought to play fairly simple roles, such as releasing antimicrobial proteins and ingesting pathogens. But recent studies find their actions to be more complex and critical to both chronic and acute inflammation, particularly the activation of the immune system in response to injury.

Studying patterns of gene expression and protein synthesis in neutrophils could reveal essential information about the immune response, but gathering the cells for analysis has been challenging. Standard isolation procedures take more than two hours and require relatively large blood samples. Neutrophils also are sensitive to handling and easily become activated, changing the molecular patterns of interest, and they contain very small amounts of messenger RNA, which is required for studies of gene expression.

Building on their experience developing silicon-chip-based devices that capture CD4 T cells for HIV diagnosis or isolate circulating tumor cells, Kotz's team developed a system that gathers a neutrophil-rich sample from microliter-sized blood samples in less than 5 minutes, reducing the risk of disturbing cells in the process. To meet the requirements for speed and precision, the researchers completely redesigned the geometry, antibody-based coating and other aspects of the cell-capture module at the heart of the device. The samples collected were successful in revealing differences in gene and protein activity relevant to the cells' activation status.

While the laboratory tests were encouraging, samples from critically injured patients need to be handled and processed in real-world clinical environments. Through the efforts of study co-author Lyle Moldawer, PhD, of the University of Florida College of Medicine, the devices were tested at six sites participating in a major National Institutes of Health-sponsored study of the immune response to injury, led by Ronald Tompkins, MD, ScD, chief of the MGH Burns Service and also a study co-author. Analyzing samples from 26 patients with serious burns or other traumatic injuries revealed complex gene expression patterns that shifted during the 28 days after injury, probably reflecting complex interactions between various immune system components.

Kotz says, "Until now, it's been logistically impossible to study neutrophils to the extent we have in this paper." He notes that their analysis of neutrophil samples from trauma patients is the largest such investigation to date and adds, "This technology -- which is much faster and gentler than current approaches to isolating cells -- can be scaled and modified to capture just about any cell type, and we're working to apply it to other cell-based assays."

Mehmet Toner, PhD, director of the BioMEMS Resource Center in the MGH Center for Engineering in Medicine, is senior author of the Nature Medicine article. In addition to Tompkins and Moldawer, primary co-authors are Aman Russom, Alan Rosenbach, Jeremy Goverman, Shawn Fagan and Daniel Irimia, MGH; Wenzong Xiao, Weihong Xu, Julie Wilhelmy, Michael Mindrinos, and Ronald Davis, Stanford Genome Technology Center; Carol Miller-Graziano, Asit De and Paul Bankey, University of Rochester School of Medicine; Wei-Jun Qian, Brianne Petritis, David Camp, and Richard Smith, Pacific Northwest National Laboratory; Elizabeth Warner, University of Florida College of Medicine; and Bernard Brownstein, Washington University of St. Louis. The study was supported by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kotz et al. Clinical microfluidics for neutrophil genomics and proteomics. Nature Medicine, 2010; DOI: 10.1038/nm.2205

Cite This Page:

Massachusetts General Hospital. "Microfluidic device allows collection, analysis of hard-to-handle immune cells." ScienceDaily. ScienceDaily, 31 August 2010. <www.sciencedaily.com/releases/2010/08/100830131346.htm>.
Massachusetts General Hospital. (2010, August 31). Microfluidic device allows collection, analysis of hard-to-handle immune cells. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/08/100830131346.htm
Massachusetts General Hospital. "Microfluidic device allows collection, analysis of hard-to-handle immune cells." ScienceDaily. www.sciencedaily.com/releases/2010/08/100830131346.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins