Featured Research

from universities, journals, and other organizations

Breaking up phosphorus with ultraviolet light may offer a safer, simpler way to build many industrial and household chemicals

Date:
September 6, 2010
Source:
Massachusetts Institute of Technology
Summary:
Phosphorus, a mineral element found in rocks and bone, is a critical ingredient in fertilizers, pesticides, detergents and other industrial and household chemicals. Now chemists have developed a new way to attach phosphorus to organic compounds by first splitting the phosphorus with ultraviolet light. Their method eliminates the need for chlorine, which is usually required for such reactions and poses health risks to workers handling the chemicals.

Researchers have developed a new way to attach phosphorus to organic compounds by first splitting the phosphorus with ultraviolet light.
Credit: iStockphoto/Jaap Hart

Phosphorus, a mineral element found in rocks and bone, is a critical ingredient in fertilizers, pesticides, detergents and other industrial and household chemicals. Once phosphorus is mined from rocks, getting it into these products is hazardous and expensive, and chemists have been trying to streamline the process for decades.

MIT chemistry professor Christopher Cummins and one of his graduate students, Daniel Tofan, have developed a new way to attach phosphorus to organic compounds by first splitting the phosphorus with ultraviolet light. Their method, described in the Aug. 26 online edition of Angewandte Chemie, eliminates the need for chlorine, which is usually required for such reactions and poses health risks to workers handling the chemicals.

Guy Bertrand, chemistry professor at the University of California at Riverside, says the beauty of the discovery is its simplicity. "It is amazing to realize that nobody thought earlier about such a simple approach to incorporate phosphorus into organic molecules," he says. "Such a synthetic approach to organophosphorus compounds is indeed urgent, since the old (chlorine)-based phosphorus chemistry has a lot of undesirable consequences on our environment."

While the new reaction cannot produce the quantities needed for large-scale production of phosphorus compounds, it opens the door to a new field of research that could lead to such industrial applications, says Bertrand, who was not involved in the research.

Extracting phosphorus

Most natural phosphorus deposits come from fossilized animal skeletons, which are especially abundant in dried-up seabeds. Those phosphorus deposits exist as phosphate rock, which usually includes impurities such as calcium and other metals that must be removed.

Purifying the rock produces white phosphorus, a molecule containing four phosphorus atoms. White phosphorus is tetrahedral, meaning it resembles a four-cornered pyramid in which each corner atom is bound to the other three. Known as P4, white phosphorus is the most stable form of molecular phosphorus. (There are also several polymeric forms, the most common of which are black and red phosphorus, which consist of long chains of broken phosphorus tetrahedrons.)

For most industrial uses, phosphorus has to be attached one atom at a time, so single atoms must be detached from the P4 molecule. This is usually done in two steps. First, three of the atoms in P4 are replaced with chlorine, resulting in PCl3 -- a phosphorus atom bound to three chlorine atoms.

Those chlorine atoms are then displaced by organic (carbon-containing) molecules, creating a wide variety of organophosphorus compounds such as those found in pesticides. However, this procedure is both wasteful and dangerous -- chlorine gas was used as a chemical weapon during World War I -- so chemists have been trying to find new ways to bind phosphorus to organic compounds without using chlorine.

A new reaction

Cummins has long been fascinated with phosphorus, in part because of its unusual tetrahedral P4 formation. Phosphorus is in the same column of the periodic table as nitrogen, whose most stable form is N2, so chemists expected that phosphorus might form a stable P2 structure. However, that is not the case.

For the past few years, Cummins' research group has been looking for ways to break P4 into P2 in hopes of attaching the smaller phosphorus molecule to organic compounds. In the new study, Cummins drew inspiration from a long overlooked paper, published in 1937, which demonstrated that P4 could be broken into two molecules of P2 with ultraviolet light. In that older study, P2 then polymerized into red phosphorus.

Cummins decided to see what would happen if he broke apart P4 with UV light in the presence of organic molecules that have an unsaturated carbon-carbon bond (meaning those carbon atoms are able to grab onto other atoms and form new bonds). After 12 hours of UV exposure, he found that a compound called a tetra-organo diphosphane had formed, which includes two atoms of phosphorus attached to two molecules of the organic compound.

This suggests, but does not conclusively prove, that P2 forms and then immediately bonds to the organic molecule. In future studies, Cummins hopes to directly observe the P2 molecule, if it is indeed present.

Cummins also plans to investigate what other organophosphorus compounds can be synthesized with ultraviolet light, including metallic compounds. He has already created a nickel-containing organophosphorus molecule, which could have applications in electronics.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Tofan, Christopher C. Cummins. Photochemical Incorporation of Diphosphorus Units into Organic Molecules. Angewandte Chemie International Edition, 2010; DOI: 10.1002/anie.201004385

Cite This Page:

Massachusetts Institute of Technology. "Breaking up phosphorus with ultraviolet light may offer a safer, simpler way to build many industrial and household chemicals." ScienceDaily. ScienceDaily, 6 September 2010. <www.sciencedaily.com/releases/2010/09/100903140907.htm>.
Massachusetts Institute of Technology. (2010, September 6). Breaking up phosphorus with ultraviolet light may offer a safer, simpler way to build many industrial and household chemicals. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/09/100903140907.htm
Massachusetts Institute of Technology. "Breaking up phosphorus with ultraviolet light may offer a safer, simpler way to build many industrial and household chemicals." ScienceDaily. www.sciencedaily.com/releases/2010/09/100903140907.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins